Maochang Li
2021
RG PA at SemEval-2021 Task 1: A Contextual Attention-based Model with RoBERTa for Lexical Complexity Prediction
Gang Rao
|
Maochang Li
|
Xiaolong Hou
|
Lianxin Jiang
|
Yang Mo
|
Jianping Shen
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
In this paper we propose a contextual attention based model with two-stage fine-tune training using RoBERTa. First, we perform the first-stage fine-tune on corpus with RoBERTa, so that the model can learn some prior domain knowledge. Then we get the contextual embedding of context words based on the token-level embedding with the fine-tuned model. And we use Kfold cross-validation to get K models and ensemble them to get the final result. Finally, we attain the 2nd place in the final evaluation phase of sub-task 2 with pearson correlation of 0.8575.