Maria Perez-Ortiz


2024

pdf bib
The Probabilities Also Matter: A More Faithful Metric for Faithfulness of Free-Text Explanations in Large Language Models
Noah Siegel | Oana-Maria Camburu | Nicolas Heess | Maria Perez-Ortiz
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In order to oversee advanced AI systems, it is important to understand their reasons for generating a given output. When prompted, large language models (LLMs) can provide natural language explanations or reasoning traces that sound plausible and receive high ratings from human annotators. However, it is unclear to what extent these explanations are truly capturing the factors responsible for the model’s predictions: the most “human-like” explanation may be different from the one that is most faithful to the model’s true decision making process. In this work, we introduce the correlational counterfactual test (CCT), a faithfulness metric based on counterfactual input edits that takes into account not just the binary label change, but the total shift in the model’s predicted label distribution. We evaluate the faithfulness of free-text explanations generated by few-shot-prompted LLMs from the Llama-2 family on three NLP tasks. We find that these explanations are indeed more likely to mention factors when they are impactful to the model’s prediction, with the degree of association increasing with model size but varying significantly by task.

pdf bib
JobFair: A Framework for Benchmarking Gender Hiring Bias in Large Language Models
Ze Wang | Zekun Wu | Xin Guan | Michael Thaler | Adriano Koshiyama | Skylar Lu | Sachin Beepath | Ediz Ertekin | Maria Perez-Ortiz
Findings of the Association for Computational Linguistics: EMNLP 2024

The use of Large Language Models (LLMs) in hiring has led to legislative actions to protect vulnerable demographic groups. This paper presents a novel framework for benchmarking hierarchical gender hiring bias in Large Language Models (LLMs) for resume scoring, revealing significant issues of reverse gender hiring bias and overdebiasing. Our contributions are fourfold: Firstly, we introduce a new construct grounded in labour economics, legal principles, and critiques of current bias benchmarks: hiring bias can be categorized into two types: Level bias (difference in the average outcomes between demographic counterfactual groups) and Spread bias (difference in the variance of outcomes between demographic counterfactual groups); Level bias can be further subdivided into statistical bias (i.e. changing with non-demographic content) and taste-based bias (i.e. consistent regardless of non-demographic content). Secondly, the framework includes rigorous statistical and computational hiring bias metrics, such as Rank After Scoring (RAS), Rank-based Impact Ratio, Permutation Test, and Fixed Effects Model. Thirdly, we analyze gender hiring biases in ten state-of-the-art LLMs. Seven out of ten LLMs show significant biases against males in at least one industry. An industry-effect regression reveals that the healthcare industry is the most biased against males. Moreover, we found that the bias performance remains invariant with resume content for eight out of ten LLMs. This indicates that the bias performance measured in this paper might apply to other resume datasets with different resume qualities. Fourthly, we provide a user-friendly demo and resume dataset to support the adoption and practical use of the framework, which can be generalized to other social traits and tasks.