This paper presents ALLIES, a meta corpus which gathers and extends existing French corpora collected from radio and TV shows. The corpus contains 1048 audio files for about 500 hours of speech. Agglomeration of data is always a difficult issue, as the guidelines used to collect, annotate and transcribe speech are generally different from one corpus to another. ALLIES intends to homogenize and correct speaker labels among the different files by integrated human feedback within a speaker verification system. The main contribution of this article is the design of a protocol in order to evaluate properly speech segmentation (including music and overlap detection), speaker diarization, speech transcription and speaker change detection. As part of it, a test partition has been carefully manually 1) segmented and annotated according to speech, music, noise, speaker labels with specific guidelines for overlap speech, 2) orthographically transcribed. This article also provides as a second contribution baseline results for several speech processing tasks.
Interruption detection is a new yet challenging task in the field of speech processing. This article presents a comprehensive study on automatic speech interruption detection, from the definition of this task, the assembly of a specialized corpus, and the development of an initial baseline system. We provide three main contributions: Firstly, we define the task, taking into account the nuanced nature of interruptions within spontaneous conversations. Secondly, we introduce a new corpus of conversational data, annotated for interruptions, to facilitate research in this domain. This corpus serves as a valuable resource for evaluating and advancing interruption detection techniques. Lastly, we present a first baseline system, which use speech processing methods to automatically identify interruptions in speech with promising results. In this article, we derivate from theoretical notions of interruption to build a simplification of this notion based on overlapped speech detection. Our findings can not only serve as a foundation for further research in the field but also provide a benchmark for assessing future advancements in automatic speech interruption detection.
Our main goal is to study the interactions between speakers according to their gender and role in broadcast media. In this paper, we propose an extensive study of gender and overlap annotations in various speech corpora mainly dedicated to diarisation or transcription tasks. We point out the issue of the heterogeneity of the annotation guidelines for both overlapping speech and gender categories. On top of that, we analyse how the speech content (casual speech, meetings, debate, interviews, etc.) impacts the distribution of overlapping speech segments. On a small dataset of 93 recordings from LCP French channel, we intend to characterise the interactions between speakers according to their gender. Finally, we propose a method which aims to highlight active speech areas in terms of interactions between speakers. Such a visualisation tool could improve the efficiency of qualitative studies conducted by researchers in human sciences.