We describe TelU-KU models of large-scale multilingual machine translation for five Southeast Asian languages: Javanese, Indonesian, Malay, Tagalog, Tamil, and English. We explore a variation of hyperparameters of flores101_mm100_175M model using random search with 10% of datasets to improve BLEU scores of all thirty language pairs. We submitted two models, TelU-KU-175M and TelU-KU- 175M_HPO, with average BLEU scores of 12.46 and 13.19, respectively. Our models show improvement in most language pairs after optimizing the hyperparameters. We also identified three language pairs that obtained a BLEU score of more than 15 while using less than 70 sentences of the training dataset: Indonesian-Tagalog, Tagalog-Indonesian, and Malay-Tagalog.
This paper describes the participation of DBMS-KU team in the SemEval 2019 Task 9, that is, suggestion mining from online reviews and forums. To deal with this task, we explore several machine learning approaches, i.e., Random Forest (RF), Logistic Regression (LR), Multinomial Naive Bayes (MNB), Linear Support Vector Classification (LSVC), Sublinear Support Vector Classification (SSVC), Convolutional Neural Network (CNN), and Variable Length Chromosome Genetic Algorithm-Naive Bayes (VLCGA-NB). Our system obtains reasonable results of F1-Score 0.47 and 0.37 on the evaluation data in Subtask A and Subtask B, respectively. In particular, our obtained results outperform the baseline in Subtask A. Interestingly, the results seem to show that our system could perform well in classifying Non-suggestion class.
This paper presents the participation of DBMS-KU Interpolation system in WMT19 shared task, namely, Kazakh-English language pair. We examine the use of interpolation method using a different language model order. Our Interpolation system combines a direct translation with Russian as a pivot language. We use 3-gram and 5-gram language model orders to perform the language translation in this work. To reduce noise in the pivot translation process, we prune the phrase table of source-pivot and pivot-target. Our experimental results show that our Interpolation system outperforms the Baseline in terms of BLEU-cased score by +0.5 and +0.1 points in Kazakh-English and English-Kazakh, respectively. In particular, using the 5-gram language model order in our system could obtain better BLEU-cased score than utilizing the 3-gram one. Interestingly, we found that by employing the Interpolation system could reduce the perplexity score of English-Kazakh when using 3-gram language model order.