Mengxiao Song


2023

pdf bib
CCL23-Eval 任务6系统报告:基于CLS动态加权平均和数据增强的电信网络诈骗案件分类(System Report for CCL23-Eval Task 6:::Classification of Telecom Internet Fraud Cases Based on CLS Dynamic Weighted Average and Data Augement)
Tianjun Liu (天昀刘,) | Tianhua Zhang (张兴华) | Mengxiao Song (宋梦潇) | Tingwen Liu (柳厅文)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“电信网络诈骗领域的案件分类作为文本分类的一项落地应用,其目的是为相关案件进行智能化的分析,有助于公安部门掌握诈骗案件的特点,针对性的预防、制止、侦查。本文以此问题为基础,从模型设计、训练过程、数据增强三个方面进行了研究,通过CLS动态加权平均、Multi-Sample Dropout、对抗训练FGM、回译等方法显著提升了模型对诈骗案件描述的分类性能。”

pdf bib
CCL23-Eval 任务6系统报告:基于CLS动态加权平均和数据增强的电信网络诈骗案件分类(System Report for CCL23-Eval Task 6:::Classification of Telecom Internet Fraud Cases Based on CLS Dynamic Weighted Average and Data Augement)
Tianjun Liu (天昀刘,) | Tianhua Zhang (张兴华) | Mengxiao Song (宋梦潇) | Tingwen Liu (柳厅文)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“电信网络诈骗领域的案件分类作为文本分类的一项落地应用,其目的是为相关案件进行智能化的分析,有助于公安部门掌握诈骗案件的特点,针对性的预防、制止、侦查。本文以此问题为基础,从模型设计、训练过程、数据增强三个方面进行了研究,通过CLS动态加权平均、Multi-Sample Dropout、对抗训练FGM、回译等方法显著提升了模型对诈骗案件描述的分类性能。”

2022

pdf bib
Enhancing Joint Multiple Intent Detection and Slot Filling with Global Intent-Slot Co-occurrence
Mengxiao Song | Bowen Yu | Li Quangang | Wang Yubin | Tingwen Liu | Hongbo Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multi-intent detection and slot filling joint model attracts more and more attention since it can handle multi-intent utterances, which is closer to complex real-world scenarios. Most existing joint models rely entirely on the training procedure to obtain the implicit correlation between intents and slots. However, they ignore the fact that leveraging the rich global knowledge in the corpus can determine the intuitive and explicit correlation between intents and slots. In this paper, we aim to make full use of the statistical co-occurrence frequency between intents and slots as prior knowledge to enhance joint multiple intent detection and slot filling. To be specific, an intent-slot co-occurrence graph is constructed based on the entire training corpus to globally discover correlation between intents and slots. Based on the global intent-slot co-occurrence, we propose a novel graph neural network to model the interaction between the two subtasks. Experimental results on two public multi-intent datasets demonstrate that our approach outperforms the state-of-the-art models.