Mia Xu Chen

Also published as: Mia Chen


2020

pdf bib
Leveraging Monolingual Data with Self-Supervision for Multilingual Neural Machine Translation
Aditya Siddhant | Ankur Bapna | Yuan Cao | Orhan Firat | Mia Chen | Sneha Kudugunta | Naveen Arivazhagan | Yonghui Wu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Over the last few years two promising research directions in low-resource neural machine translation (NMT) have emerged. The first focuses on utilizing high-resource languages to improve the quality of low-resource languages via multilingual NMT. The second direction employs monolingual data with self-supervision to pre-train translation models, followed by fine-tuning on small amounts of supervised data. In this work, we join these two lines of research and demonstrate the efficacy of monolingual data with self-supervision in multilingual NMT. We offer three major results: (i) Using monolingual data significantly boosts the translation quality of low-resource languages in multilingual models. (ii) Self-supervision improves zero-shot translation quality in multilingual models. (iii) Leveraging monolingual data with self-supervision provides a viable path towards adding new languages to multilingual models, getting up to 33 BLEU on ro-en translation without any parallel data or back-translation.

pdf bib
Towards End-to-End In-Image Neural Machine Translation
Elman Mansimov | Mitchell Stern | Mia Chen | Orhan Firat | Jakob Uszkoreit | Puneet Jain
Proceedings of the First International Workshop on Natural Language Processing Beyond Text

In this paper, we offer a preliminary investigation into the task of in-image machine translation: transforming an image containing text in one language into an image containing the same text in another language. We propose an end-to-end neural model for this task inspired by recent approaches to neural machine translation, and demonstrate promising initial results based purely on pixel-level supervision. We then offer a quantitative and qualitative evaluation of our system outputs and discuss some common failure modes. Finally, we conclude with directions for future work.

2018

pdf bib
The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation
Mia Xu Chen | Orhan Firat | Ankur Bapna | Melvin Johnson | Wolfgang Macherey | George Foster | Llion Jones | Mike Schuster | Noam Shazeer | Niki Parmar | Ashish Vaswani | Jakob Uszkoreit | Lukasz Kaiser | Zhifeng Chen | Yonghui Wu | Macduff Hughes
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The past year has witnessed rapid advances in sequence-to-sequence (seq2seq) modeling for Machine Translation (MT). The classic RNN-based approaches to MT were first out-performed by the convolutional seq2seq model, which was then out-performed by the more recent Transformer model. Each of these new approaches consists of a fundamental architecture accompanied by a set of modeling and training techniques that are in principle applicable to other seq2seq architectures. In this paper, we tease apart the new architectures and their accompanying techniques in two ways. First, we identify several key modeling and training techniques, and apply them to the RNN architecture, yielding a new RNMT+ model that outperforms all of the three fundamental architectures on the benchmark WMT’14 English to French and English to German tasks. Second, we analyze the properties of each fundamental seq2seq architecture and devise new hybrid architectures intended to combine their strengths. Our hybrid models obtain further improvements, outperforming the RNMT+ model on both benchmark datasets.

pdf bib
Training Deeper Neural Machine Translation Models with Transparent Attention
Ankur Bapna | Mia Chen | Orhan Firat | Yuan Cao | Yonghui Wu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

While current state-of-the-art NMT models, such as RNN seq2seq and Transformers, possess a large number of parameters, they are still shallow in comparison to convolutional models used for both text and vision applications. In this work we attempt to train significantly (2-3x) deeper Transformer and Bi-RNN encoders for machine translation. We propose a simple modification to the attention mechanism that eases the optimization of deeper models, and results in consistent gains of 0.7-1.1 BLEU on the benchmark WMT’14 English-German and WMT’15 Czech-English tasks for both architectures.