Michelle YoungJin Kim


2024

pdf bib
ABLE: Agency-BeLiefs Embedding to Address Stereotypical Bias through Awareness Instead of Obliviousness
Michelle YoungJin Kim | Junghwan Kim | Kristen Johnson
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Natural Language Processing (NLP) models tend to inherit and amplify stereotypical biases present in their training data, leading to harmful societal consequences. Current efforts to rectify these biases typically revolve around making models oblivious to bias, which is at odds with the idea that humans require increased awareness to tackle these biases better. This prompts a fundamental research question: are bias-oblivious models the only viable solution to combat stereotypical biases? This paper answers this question by proposing the Agency-BeLiefs Embedding (ABLE) model, a novel approach that actively encodes stereotypical biases into the embedding space. ABLE draws upon social psychological theory to acquire and represent stereotypical biases in the form of agency and belief scores rather than directly representing stereotyped groups. Our experimental results showcase ABLE’s effectiveness in learning agency and belief stereotypes while preserving the language model’s proficiency. Furthermore, we underscore the practical significance of incorporating stereotypes within the ABLE model by demonstrating its utility in various downstream tasks. Our approach exemplifies the potential benefits of addressing bias through awareness, as opposed to the prevailing approach of mitigating bias through obliviousness.

2022

pdf bib
CLoSE: Contrastive Learning of Subframe Embeddings for Political Bias Classification of News Media
Michelle YoungJin Kim | Kristen Marie Johnson
Proceedings of the 29th International Conference on Computational Linguistics

Framing is a political strategy in which journalists and politicians emphasize certain aspects of a societal issue in order to influence and sway public opinion. Frameworks for detecting framing in news articles or social media posts are critical in understanding the spread of biased information in our society. In this paper, we propose CLoSE, a multi-task BERT-based model which uses contrastive learning to embed indicators of frames from news articles in order to predict political bias. We evaluate the performance of our proposed model on subframes and political bias classification tasks. We also demonstrate the model’s classification accuracy on zero-shot and few-shot learning tasks, providing a promising avenue for framing detection in unlabeled data.