Minsoo Cho


2023

pdf bib
ExplainMeetSum: A Dataset for Explainable Meeting Summarization Aligned with Human Intent
Hyun Kim | Minsoo Cho | Seung-Hoon Na
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

To enhance the explainability of meeting summarization, we construct a new dataset called “ExplainMeetSum,” an augmented version of QMSum, by newly annotating evidence sentences that faithfully “explain” a summary. Using ExplainMeetSum, we propose a novel multiple extractor guided summarization, namely Multi-DYLE, which extensively generalizes DYLE to enable using a supervised extractor based on human-aligned extractive oracles. We further present an explainability-aware task, named “Explainable Evidence Extraction” (E3), which aims to automatically detect all evidence sentences that support a given summary. Experimental results on the QMSum dataset show that the proposed Multi-DYLE outperforms DYLE with gains of up to 3.13 in the ROUGE-1 score. We further present the initial results on the E3 task, under the settings using separate and joint evaluation metrics.
Search
Co-authors
Venues