Moritz Kronberger


2024

pdf bib
THAVQA: A German Task-oriented VQA Dataset Annotated with Human Visual Attention
Moritz Kronberger | Viviana Ventura
Proceedings of the 10th Italian Conference on Computational Linguistics (CLiC-it 2024)

Video question answering (VQA) is a challenging task that requires models to generate answers by using both information from text and video. We present Task-oriented Human Attention Video Question Answering (THAVQA), a new VQA dataset consisting of third- and first- person videos of an instructor using a sewing machine. The sewing task is formalized step-by-step in a script: each step consists of a video annotated with German language open-ended question and answer (QA) pairs and with human visual attention. The paper also includes a first assessment of the performance of a pre-trained Multimodal Large Language Model (MLLM) in generating answers to the questions of our dataset across different experimental settings.Results show that our task-oriented dataset is challenging for pre-trained models. Specifically, the model struggles to answer questions requiring technical knowledge or spatio-temporal reasoning.