Mustafa Ocal


2024

pdf bib
pyTLEX: A Python Library for TimeLine EXtraction
Akul Singh | Jared Hummer | Mustafa Ocal | Mark Finlayson
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

pyTLEX is an implementation of the TimeLine EXtraction algorithm (TLEX; Finlayson et al.,2021) that enables users to work with TimeML annotations and perform advanced temporal analysis, offering a comprehensive suite of features. TimeML is a standardized markup language for temporal information in text. pyTLEX allows users to parse TimeML annotations, construct TimeML graphs, and execute the TLEX algorithm to effect complete timeline extraction. In contrast to previous implementations (i.e., jTLEX for Java), pyTLEX sets itself apart with a range of advanced features. It introduces a React-based visualization system, enhancing the exploration of temporal data and the comprehension of temporal connections within textual information. Furthermore, pyTLEX incorporates an algorithm for increasing connectivity in temporal graphs, which identifies graph disconnectivity and recommends links based on temporal reasoning, thus enhancing the coherence of the graph representation. Additionally, pyTLEX includes a built-in validation algorithm, ensuring compliance with TimeML annotation guidelines, which is essential for maintaining data quality and reliability. pyTLEX equips researchers and developers with an extensive toolkit for temporal analysis, and its testing across various datasets validates its accuracy and reliability.

2023

pdf bib
jTLEX: a Java Library for TimeLine EXtraction
Mustafa Ocal | Akul Singh | Jared Hummer | Antonela Radas | Mark Finlayson
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

jTLEX is a programming library that provides a Java implementation of the TimeLine EXtraction algorithm (TLEX; Finlayson et al.,2021), along with utilities for programmatic manipulation of TimeML graphs. Timelines are useful for a number of natural language understanding tasks, such as question answering, cross-document event coreference, and summarization & visualization. jTLEX provides functionality for (1) parsing TimeML annotations into Java objects, (2) construction of TimeML graphs from scratch, (3) partitioning of TimeML graphs into temporally connected subgraphs, (4) transforming temporally connected subgraphs into point algebra (PA) graphs, (5) extracting exact timeline of TimeML graphs, (6) detecting inconsistent subgraphs, and (7) calculating indeterminate sections of the timeline. The library has been tested on the entire TimeBank corpus, and comes with a suite of unit tests. We release the software as open source with a free license for non-commercial use.

2022

pdf bib
Holistic Evaluation of Automatic TimeML Annotators
Mustafa Ocal | Adrian Perez | Antonela Radas | Mark Finlayson
Proceedings of the Thirteenth Language Resources and Evaluation Conference

TimeML is a scheme for representing temporal information (times, events, & temporal relations) in texts. Although automatic TimeML annotation is challenging, there has been notable progress, with F1s of 0.8–0.9 for events and time detection subtasks, and F1s of 0.5–0.7 for relation extraction. Individually, these subtask results are reasonable, even good, but when combined to generate a full TimeML graph, is overall performance still acceptable? We present a novel suite of eight metrics, combined with a new graph-transformation experimental design, for holistic evaluation of TimeML graphs. We apply these metrics to four automatic TimeML annotation systems (CAEVO, TARSQI, CATENA, and ClearTK). We show that on average 1/3 of the TimeML graphs produced using these systems are inconsistent, and there is on average 1/5 more temporal indeterminacy than the gold-standard. We also show that the automatically generated graphs are on average 109 edits from the gold-standard, which is 1/3 toward complete replacement. Finally, we show that the relationship individual subtask performance and graph quality is non-linear: small errors in TimeML subtasks result in rapid degradation of final graph quality. These results suggest current automatic TimeML annotators are far from optimal and significant further improvement would be useful.

pdf bib
A Comprehensive Evaluation and Correction of the TimeBank Corpus
Mustafa Ocal | Antonela Radas | Jared Hummer | Karine Megerdoomian | Mark Finlayson
Proceedings of the Thirteenth Language Resources and Evaluation Conference

TimeML is an annotation scheme for capturing temporal information in text. The developers of TimeML built the TimeBank corpus to both validate the scheme and provide a rich dataset of events, temporal expressions, and temporal relationships for training and testing temporal analysis systems. In our own work we have been developing methods aimed at TimeML graphs for detecting (and eventually automatically correcting) temporal inconsistencies, extracting timelines, and assessing temporal indeterminacy. In the course of this investigation we identified numerous previously unrecognized issues in the TimeBank corpus, including multiple violations of TimeML annotation guide rules, incorrectly disconnected temporal graphs, as well as inconsistent, redundant, missing, or otherwise incorrect annotations. We describe our methods for detecting and correcting these problems, which include: (a) automatic guideline checking (109 violations); (b) automatic inconsistency checking (65 inconsistent files); (c) automatic disconnectivity checking (625 incorrect breakpoints); and (d) manual comparison with the output of state-of-the-art automatic annotators to identify missing annotations (317 events, 52 temporal expressions). We provide our code as well as a set of patch files that can be applied to the TimeBank corpus to produce a corrected version for use by other researchers in the field.

2020

pdf bib
Evaluating Information Loss in Temporal Dependency Trees
Mustafa Ocal | Mark Finlayson
Proceedings of the Twelfth Language Resources and Evaluation Conference

Temporal Dependency Trees (TDTs) have emerged as an alternative to full temporal graphs for representing the temporal structure of texts, with a key advantage being that TDTs can be straightforwardly computed using adapted dependency parsers. Relative to temporal graphs, the tree form of TDTs naturally omits some fraction of temporal relationships, which intuitively should decrease the amount of temporal information available, potentially increasing temporal indeterminacy of the global ordering. We demonstrate a new method for quantifying this indeterminacy that relies on solving temporal constraint problems to extract timelines, and show that TDTs result in up to a 109% increase in temporal indeterminacy over their corresponding temporal graphs for the three corpora we examine. On average, the increase in indeterminacy is 32%, and we show that this increase is a result of the TDT representation eliminating on average only 2.4% of total temporal relations. This result suggests that small differences can have big effects in temporal graphs, and the use of TDTs must be balanced against their deficiencies, with tasks requiring an accurate global temporal ordering potentially calling for use of the full temporal graph