Muthu Kumar Chandrasekaran

Also published as: Muthu Kumar Chandrasekaran


2022

pdf bib
Read Top News First: A Document Reordering Approach for Multi-Document News Summarization
Chao Zhao | Tenghao Huang | Somnath Basu Roy Chowdhury | Muthu Kumar Chandrasekaran | Kathleen McKeown | Snigdha Chaturvedi
Findings of the Association for Computational Linguistics: ACL 2022

A common method for extractive multi-document news summarization is to re-formulate it as a single-document summarization problem by concatenating all documents as a single meta-document. However, this method neglects the relative importance of documents. We propose a simple approach to reorder the documents according to their relative importance before concatenating and summarizing them. The reordering makes the salient content easier to learn by the summarization model. Experiments show that our approach outperforms previous state-of-the-art methods with more complex architectures.

2021

pdf bib
Event-Driven News Stream Clustering using Entity-Aware Contextual Embeddings
Kailash Karthik Saravanakumar | Miguel Ballesteros | Muthu Kumar Chandrasekaran | Kathleen McKeown
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We propose a method for online news stream clustering that is a variant of the non-parametric streaming K-means algorithm. Our model uses a combination of sparse and dense document representations, aggregates document-cluster similarity along these multiple representations and makes the clustering decision using a neural classifier. The weighted document-cluster similarity model is learned using a novel adaptation of the triplet loss into a linear classification objective. We show that the use of a suitable fine-tuning objective and external knowledge in pre-trained transformer models yields significant improvements in the effectiveness of contextual embeddings for clustering. Our model achieves a new state-of-the-art on a standard stream clustering dataset of English documents.

2020

pdf bib
Proceedings of the First Workshop on Scholarly Document Processing
Muthu Kumar Chandrasekaran | Anita de Waard | Guy Feigenblat | Dayne Freitag | Tirthankar Ghosal | Eduard Hovy | Petr Knoth | David Konopnicki | Philipp Mayr | Robert M. Patton | Michal Shmueli-Scheuer
Proceedings of the First Workshop on Scholarly Document Processing

pdf bib
Overview of the First Workshop on Scholarly Document Processing (SDP)
Muthu Kumar Chandrasekaran | Guy Feigenblat | Dayne Freitag | Tirthankar Ghosal | Eduard Hovy | Philipp Mayr | Michal Shmueli-Scheuer | Anita de Waard
Proceedings of the First Workshop on Scholarly Document Processing

Next to keeping up with the growing literature in their own and related fields, scholars increasingly also need to rebut pseudo-science and disinformation. To address these challenges, computational work on enhancing search, summarization, and analysis of scholarly documents has flourished. However, the various strands of research on scholarly document processing remain fragmented. To reach to the broader NLP and AI/ML community, pool distributed efforts and enable shared access to published research, we held the 1st Workshop on Scholarly Document Processing at EMNLP 2020 as a virtual event. The SDP workshop consisted of a research track (including a poster session), two invited talks and three Shared Tasks (CL-SciSumm, Lay-Summ and LongSumm), geared towards easier access to scientific methods and results. Website: https://ornlcda.github.io/SDProc

pdf bib
Overview and Insights from the Shared Tasks at Scholarly Document Processing 2020: CL-SciSumm, LaySumm and LongSumm
Muthu Kumar Chandrasekaran | Guy Feigenblat | Eduard Hovy | Abhilasha Ravichander | Michal Shmueli-Scheuer | Anita de Waard
Proceedings of the First Workshop on Scholarly Document Processing

We present the results of three Shared Tasks held at the Scholarly Document Processing Workshop at EMNLP2020: CL-SciSumm, LaySumm and LongSumm. We report on each of the tasks, which received 18 submissions in total, with some submissions addressing two or three of the tasks. In summary, the quality and quantity of the submissions show that there is ample interest in scholarly document summarization, and the state of the art in this domain is at a midway point between being an impossible task and one that is fully resolved.

2018

pdf bib
Countering Position Bias in Instructor Interventions in MOOC Discussion Forums
Muthu Kumar Chandrasekaran | Min-Yen Kan
Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications

We systematically confirm that instructors are strongly influenced by the user interface presentation of Massive Online Open Course (MOOC) discussion forums. In a large scale dataset, we conclusively show that instructor interventions exhibit strong position bias, as measured by the position where the thread appeared on the user interface at the time of intervention. We measure and remove this bias, enabling unbiased statistical modelling and evaluation. We show that our de-biased classifier improves predicting interventions over the state-of-the-art on courses with sufficient number of interventions by 8.2% in F1 and 24.4% in recall on average.

2016

pdf bib
Proceedings of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL)
Guillaume Cabanac | Muthu Kumar Chandrasekaran | Ingo Frommholz | Kokil Jaidka | Min-Yen Kan | Philipp Mayr | Dietmar Wolfram
Proceedings of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL)

pdf bib
Overview of the CL-SciSumm 2016 Shared Task
Kokil Jaidka | Muthu Kumar Chandrasekaran | Sajal Rustagi | Min-Yen Kan
Proceedings of the Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL)

pdf bib
A Comparison of Word Embeddings for English and Cross-Lingual Chinese Word Sense Disambiguation
Hong Jin Kang | Tao Chen | Muthu Kumar Chandrasekaran | Min-Yen Kan
Proceedings of the 3rd Workshop on Natural Language Processing Techniques for Educational Applications (NLPTEA2016)

Word embeddings are now ubiquitous forms of word representation in natural language processing. There have been applications of word embeddings for monolingual word sense disambiguation (WSD) in English, but few comparisons have been done. This paper attempts to bridge that gap by examining popular embeddings for the task of monolingual English WSD. Our simplified method leads to comparable state-of-the-art performance without expensive retraining. Cross-Lingual WSD – where the word senses of a word in a source language come from a separate target translation language – can also assist in language learning; for example, when providing translations of target vocabulary for learners. Thus we have also applied word embeddings to the novel task of cross-lingual WSD for Chinese and provide a public dataset for further benchmarking. We have also experimented with using word embeddings for LSTM networks and found surprisingly that a basic LSTM network does not work well. We discuss the ramifications of this outcome.

2015

pdf bib
Interactive Second Language Learning from News Websites
Tao Chen | Naijia Zheng | Yue Zhao | Muthu Kumar Chandrasekaran | Min-Yen Kan
Proceedings of the 2nd Workshop on Natural Language Processing Techniques for Educational Applications