Na Liu


2022

pdf bib
Detecting Textual Adversarial Examples Based on Distributional Characteristics of Data Representations
Na Liu | Mark Dras | Wei Emma Zhang
Proceedings of the 7th Workshop on Representation Learning for NLP

Although deep neural networks have achieved state-of-the-art performance in various machine learning tasks, adversarial examples, constructed by adding small non-random perturbations to correctly classified inputs, successfully fool highly expressive deep classifiers into incorrect predictions. Approaches to adversarial attacks in natural language tasks have boomed in the last five years using character-level, word-level, phrase-level, or sentence-level textual perturbations. While there is some work in NLP on defending against such attacks through proactive methods, like adversarial training, there is to our knowledge no effective general reactive approaches to defence via detection of textual adversarial examples such as is found in the image processing literature. In this paper, we propose two new reactive methods for NLP to fill this gap, which unlike the few limited application baselines from NLP are based entirely on distribution characteristics of learned representations”:” we adapt one from the image processing literature (Local Intrinsic Dimensionality (LID)), and propose a novel one (MultiDistance Representation Ensemble Method (MDRE)). Adapted LID and MDRE obtain state-of-the-art results on character-level, word-level, and phrase-level attacks on the IMDB dataset as well as on the later two with respect to the MultiNLI dataset. For future research, we publish our code .

2020

pdf bib
Incorporating Inner-word and Out-word Features for Mongolian Morphological Segmentation
Na Liu | Xiangdong Su | Haoran Zhang | Guanglai Gao | Feilong Bao
Proceedings of the 28th International Conference on Computational Linguistics

Mongolian morphological segmentation is regarded as a crucial preprocessing step in many Mongolian related NLP applications and has received extensive attention. Recently, end-to-end segmentation approaches with long short-term memory networks (LSTM) have achieved excellent results. However, the inner-word features among characters in the word and the out-word features from context are not well utilized in the segmentation process. In this paper, we propose a neural network incorporating inner-word and out-word features for Mongolian morphological segmentation. The network consists of two encoders and one decoder. The inner-word encoder uses the self-attention mechanisms to capture the inner-word features of the target word. The out-word encoder employs a two layers BiLSTM network to extract out-word features in the sentence. Then, the decoder adopts a multi-head double attention layer to fuse the inner-word features and out-word features and produces the segmentation result. The evaluation experiment compares the proposed network with the baselines and explores the effectiveness of the sub-modules.