Navjyoti Singh
2018
What makes us laugh? Investigations into Automatic Humor Classification
Vikram Ahuja
|
Taradheesh Bali
|
Navjyoti Singh
Proceedings of the Second Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media
Most scholarly works in the field of computational detection of humour derive their inspiration from the incongruity theory. Incongruity is an indispensable facet in drawing a line between humorous and non-humorous occurrences but is immensely inadequate in shedding light on what actually made the particular occurrence a funny one. Classical theories like Script-based Semantic Theory of Humour and General Verbal Theory of Humour try and achieve this feat to an adequate extent. In this paper we adhere to a more holistic approach towards classification of humour based on these classical theories with a few improvements and revisions. Through experiments based on our linear approach and performed on large data-sets of jokes, we are able to demonstrate the adaptability and show componentizability of our model, and that a host of classification techniques can be used to overcome the challenging problem of distinguishing between various categories and sub-categories of jokes.
2016
Sarcasm Detection : Building a Contextual Hierarchy
Taradheesh Bali
|
Navjyoti Singh
Proceedings of the Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media (PEOPLES)
The conundrum of understanding and classifying sarcasm has been dealt with by the traditional theorists as an analysis of a sarcastic utterance and the ironic situation that surrounds it. The problem with such an approach is that it is too narrow, as it is unable to sufficiently utilize the two indispensable agents in making such an utterance, viz. the speaker and the listener. It undermines the necessary context required to comprehend a sarcastic utterance. In this paper, we propose a novel approach towards understanding sarcasm in terms of the existing knowledge hierarchy between the two participants, which forms the basis of the context that both agents share. The difference in relationship of the speaker of the sarcastic utterance and the disparate audience found on social media, such as Twitter, is also captured. We then apply our model on a corpus of tweets to achieve significant results and consequently, shed light on subjective nature of context, which is contingent on the relation between the speaker and the listener.