Oliver Kraus


2025

pdf bib
Cross-Dialect Information Retrieval: Information Access in Low-Resource and High-Variance Languages
Robert Litschko | Oliver Kraus | Verena Blaschke | Barbara Plank
Proceedings of the 31st International Conference on Computational Linguistics

A large amount of local and culture-specific knowledge (e.g., people, traditions, food) can only be found in documents written in dialects. While there has been extensive research conducted on cross-lingual information retrieval (CLIR), the field of cross-dialect retrieval (CDIR) has received limited attention. Dialect retrieval poses unique challenges due to the limited availability of resources to train retrieval models and the high variability in non-standardized languages. We study these challenges on the example of German dialects and introduce the first German dialect retrieval dataset, dubbed WikiDIR, which consists of seven German dialects extracted from Wikipedia. Using WikiDIR, we demonstrate the weakness of lexical methods in dealing with high lexical variation in dialects. We further show that commonly used CLIR methods such as query translation or zero-shot cross-lingual transfer with multilingual encoders do not transfer well to extremely low-resource setups, motivating the need for resource-lean and dialect-specific retrieval models.