In this paper, we describe the different approaches explored by the Jetsons team for the Multi-Lingual ESG Impact Duration Inference (ML-ESG-3) shared task. The shared task focuses on predicting the duration and type of the ESG impact of a news article. The shared task dataset consists of 2,059 news titles and articles in English, French, Korean, and Japanese languages. For the impact duration classification task, we fine-tuned XLM-RoBERTa with a custom fine-tuning strategy and using self-training and DeBERTa-v3 using only English translations. These models individually ranked first on the leaderboard for Korean and Japanese and in an ensemble for the English language, respectively. For the impact type classification task, our XLM-RoBERTa model fine-tuned using a custom fine-tuning strategy ranked first for the English language.
In addressing the task of converting natural language to SQL queries, there are several semantic and syntactic challenges. It becomes increasingly important to understand and remedy the points of failure as the performance of semantic parsing systems improve. We explore semantic parse correction with natural language feedback, proposing a new solution built on the success of autoregressive decoders in text-to-SQL tasks. By separating the semantic and syntactic difficulties of the task, we show that the accuracy of text-to-SQL parsers can be boosted by up to 26% with only one turn of correction with natural language. Additionally, we show that a T5-base model is capable of correcting the errors of a T5-large model in a zero-shot, cross-parser setting.
In this paper, we discuss the various approaches by the Jetsons team for the “Pairwise Comparison” sub-task of the ERAI shared task to compare financial opinions for profitability and loss. Our BERT-Chinese model considers a pair of opinions and predicts the one with a higher maximum potential profit (MPP) with 62.07% accuracy. We analyze the performance of our approaches on both the MPP and maximal loss (ML) problems and deeply dive into why BERT-Chinese outperforms other models.
In this paper, we present a system that addresses the taxonomy enrichment problem for Environment, Social and Governance issues in the financial domain, as well as classifying sentences as sustainable or unsustainable, for FinSim4-ESG, a shared task for the FinNLP workshop at IJCAI-2022. We first created a derived dataset for taxonomy enrichment by using a sentence-BERT-based paraphrase detector (Reimers and Gurevych, 2019) (on the train set) to create positive and negative term-concept pairs. We then model the problem by fine-tuning the sentence-BERT-based paraphrase detector on this derived dataset, and use it as the encoder, and use a Logistic Regression classifier as the decoder, resulting in test Accuracy: 0.6 and Avg. Rank: 1.97. In case of the sentence classification task, the best-performing classifier (Accuracy: 0.92) consists of a pre-trained RoBERTa model (Liu et al., 2019a) as the encoder and a Feed Forward Neural Network classifier as the decoder.
We present the first large scale corpus for entity resolution in email conversations (CEREC). The corpus consists of 6001 email threads from the Enron Email Corpus containing 36,448 email messages and 38,996 entity coreference chains. The annotation is carried out as a two-step process with minimal manual effort. Experiments are carried out for evaluating different features and performance of four baselines on the created corpus. For the task of mention identification and coreference resolution, a best performance of 54.1 F1 is reported, highlighting the room for improvement. An in-depth qualitative and quantitative error analysis is presented to understand the limitations of the baselines considered.
This paper investigates the problem of entity resolution for email conversations and presents a seed annotated corpus of email threads labeled with entity coreference chains. Characteristics of email threads concerning reference resolution are first discussed, and then the creation of the corpus and annotation steps are explained. Finally, performance of the current state-of-the-art deep learning models on the seed corpus is evaluated and qualitative error analysis on the predictions obtained is presented.
This paper describes an accurate framework for carrying out multi-lingual discourse segmentation with BERT (Devlin et al., 2019). The model is trained to identify segments by casting the problem as a token classification problem and jointly learning syntactic features like part-of-speech tags and dependency relations. This leads to significant improvements in performance. Experiments are performed in different languages, such as English, Dutch, German, Portuguese Brazilian and Basque to highlight the cross-lingual effectiveness of the segmenter. In particular, the model achieves a state-of-the-art F-score of 96.7 for the RST-DT corpus (Carlson et al., 2003) improving on the previous best model by 7.2%. Additionally, a qualitative explanation is provided for how proposed changes contribute to model performance by analyzing errors made on the test data.