Partha Sengupta
2024
HIJLI_JU at SemEval-2024 Task 7: Enhancing Quantitative Question Answering Using Fine-tuned BERT Models
Partha Sengupta
|
Sandip Sarkar
|
Dipankar Das
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)
In data and numerical analysis, Quantitative Question Answering (QQA) becomes a crucial instrument that provides deep insights for analyzing large datasets and helps make well-informed decisions in industries such as finance, healthcare, and business. This paper explores the “HIJLI_JU” team’s involvement in NumEval Task 1 within SemEval 2024, with a particular emphasis on quantitative comprehension. Specifically, our method addresses numerical complexities by fine-tuning a BERT model for sophisticated multiple-choice question answering, leveraging the Hugging Face ecosystem. The effectiveness of our QQA model is assessed using a variety of metrics, with an emphasis on the f1_score() of the scikit-learn library. Thorough analysis of the macro-F1, micro-F1, weighted-F1, average, and binary-F1 scores yields detailed insights into the model’s performance in a range of question formats.