Pattabhi RK Rao

Also published as: T. Pattabhi R. K Rao, Pattabhi RK Rao, Pattabhi RK. Rao


2024

pdf bib
Finding the Causality of an Event in News Articles
Sobha Lalitha Devi | Pattabhi RK Rao
Proceedings of the 7th Workshop on Indian Language Data: Resources and Evaluation

This paper discusses about the finding of causality of an event in newspaper articles. The analysis of causality , otherwise known as cause and effect is crucial for building efficient Natural Language Understanding (NLU) supported AI systems such as Event tracking and it is considered as a complex semantic relation under discourse theory. A cause-effect relation consists of a linguistic marker and its two arguments. The arguments are semantic arguments where the cause is the first argument (Arg1) and the effect is the second argument(Arg2). In this work we have considered the causal relations in Tamil Newspaper articles. The analysis of causal constructions, the causal markers and their syntactic relation lead to the identification of different features for developing the language model using RBMs (Restricted Boltzmann Machine). The experiments we performed have given encouraging results. The Cause-Effect system developed is used in a mobile App for Event profiling called “Nigalazhvi” where the cause and effect of an event is identified and given to the user.

2023

pdf bib
Intent Detection and Zero-shot Intent Classification for Chatbots
Sobha Lalitha Devi | Pattabhi RK. Rao
Proceedings of the 20th International Conference on Natural Language Processing (ICON)

In this paper we give in detail how seen and unseen intent is detected and classified. User intent detection has a critical role in dialogue systems. While analysing the intents it has been found that intents are diversely expressed and new variety of intents emerge continuously. Here we propose a capsule-based approach that classifies the intent and a zero-shot learning to identify the unseen intent. There are recently proposed methods on zero-shot classification which are implemented differently from ours. We have also developed an annotated corpus of free conversations in Tamil, the language we have used for intent classification and for our chatbot. Our proposed method on intent classification performs well.

pdf bib
Coreference Resolution Using AdapterFusion-based Multi-Task learning
Sobha Lalitha Devi | Vijay Sundar Ram R. | Pattabhi RK. Rao
Proceedings of the 20th International Conference on Natural Language Processing (ICON)

End-to-end coreference resolution is the task of identifying the mentions in a text that refer to the same real world entity and grouping them into clusters. It is crucially required for natural language understanding tasks and other high-level NLP tasks. In this paper, we present an end-to-end architecture for neural coreference resolution using AdapterFusion, a new two stage learning algorithm that leverages knowledge from multiple tasks. First task is in identifying the mentions in the text and the second to determine the coreference clusters. In the first task we learn task specific parameters called adapters that encapsulate the taskspecific information and then combine the adapters in a separate knowledge composition step to identify the mentions and their clusters. We evaluated it using FIRE corpus for Malayalam and Tamil and we achieved state of art performance.

pdf bib
ChemXtract’ A System for Extraction of Chemical Events from Patent Documents
Pattabhi RK Rao | Sobha Lalitha Devi
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

ChemXtraxt main goal is to extract the chemical events from patent documents. Event extraction requires that we first identify the names of chemical compounds involved in the events. Thus, in this work two extractions are done and they are (a) names of chemical compounds and (b) event that identify the specific involvement of the chemical compounds in a chemical reaction. Extraction of essential elements of a chemical reaction, generally known as Named Entity Recognition (NER), extracts the compounds, condition and yields, their specific role in reaction and assigns a label according to the role it plays within a chemical reaction. Whereas event extraction identifies the chemical event relations between the chemical compounds identified. Here in this work we have used Neural Conditional Random Fields (NCRF), which combines the power of artificial neural network (ANN) and CRFs. Different levels of features that include linguistic, orthographical and lexical clues are used. The results obtained are encouraging.

2017

pdf bib
Scalable Bio-Molecular Event Extraction System towards Knowledge Acquisition
Pattabhi RK Rao | Sindhuja Gopalan | Sobha Lalitha Devi
Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017)

2015

pdf bib
A Hybrid Discourse Relation Parser in CoNLL 2015
Sobha Lalitha Devi | Sindhuja Gopalan | Lakshmi S. | Pattabhi RK Rao | Vijay Sundar Ram | Malarkodi C.S.
Proceedings of the Nineteenth Conference on Computational Natural Language Learning - Shared Task

2014

pdf bib
A Generic Anaphora Resolution Engine for Indian Languages
Sobha Lalitha Devi | Vijay Sundar Ram | Pattabhi RK Rao
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2012

pdf bib
Tamil NER - Coping with Real Time Challenges
Malarkodi C.S | Pattabhi RK Rao | Sobha Lalitha Devi
Proceedings of the Workshop on Machine Translation and Parsing in Indian Languages

2011

pdf bib
Hybrid Approach for Coreference Resolution
Lalitha Devi Sobha | Pattabhi RK Rao | R. Vijay Sundar Ram | CS. Malarkodi | A. Akilandeswari
Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task

2010

pdf bib
How to Get the Same News from Different Language News Papers
T. Pattabhi R. K Rao | Sobha Lalitha Devi
Proceedings of the 4th Workshop on Cross Lingual Information Access