Pavel Kalaidin


2021

pdf bib
Implicit Unlikelihood Training: Improving Neural Text Generation with Reinforcement Learning
Evgeny Lagutin | Daniil Gavrilov | Pavel Kalaidin
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Likelihood training and maximization-based decoding result in dull and repetitive generated texts even when using powerful language models (Holtzman et al., 2019). Adding a loss function for regularization was shown to improve text generation output by helping avoid unwanted properties, such as contradiction or repetition (Li at al., 2020). In this work, we propose fine-tuning a language model by using policy gradient reinforcement learning, directly optimizing for better generation. We apply this approach to minimizing repetition in generated text, and show that, when combined with unlikelihood training (Welleck et al., 2020), our method further reduces repetition without impacting the language model quality. We also evaluate other methods for improving generation at training and decoding time, and compare them using various metrics aimed at control for better text generation output.

2020

pdf bib
Reducing Unintended Identity Bias in Russian Hate Speech Detection
Nadezhda Zueva | Madina Kabirova | Pavel Kalaidin
Proceedings of the Fourth Workshop on Online Abuse and Harms

Toxicity has become a grave problem for many online communities, and has been growing across many languages, including Russian. Hate speech creates an environment of intimidation, discrimination, and may even incite some real-world violence. Both researchers and social platforms have been focused on developing models to detect toxicity in online communication for a while now. A common problem of these models is the presence of bias towards some words (e.g. woman, black, jew or женщина, черный, еврей) that are not toxic, but serve as triggers for the classifier due to model caveats. In this paper, we describe our efforts towards classifying hate speech in Russian, and propose simple techniques of reducing unintended bias, such as generating training data with language models using terms and words related to protected identities as context and applying word dropout to such words.