Pavul chinnappan D


2024

pdf bib
InnovationEngineers@DravidianLangTech-EACL 2024: Sentimental Analysis of YouTube Comments in Tamil by using Machine Learning
Kogilavani Shanmugavadivel | Malliga Subramanian | Palanimurugan V | Pavul chinnappan D
Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

There is opportunity for machine learning and natural language processing research because of the growing volume of textual data. Although there has been little research done on trend extraction from YouTube comments, sentiment analysis is an intriguing issue because of the poor consistency and quality of the material found there. The purpose of this work is to use machine learning techniques and algorithms to do sentiment analysis on YouTube comments pertaining to popular themes. The findings demonstrate that sentiment analysis is capable of giving a clear picture of how actual events affect public opinion. This study aims to make it easier for academics to find high-quality sentiment analysis research publications. Data normalisation methods are used to clean an annotated corpus of 1500 citation sentences for the study. .For classification, a system utilising one machine learning algorithm—K-Nearest Neighbour (KNN), Na ̈ıve Bayes, SVC (Support Vector Machine), and RandomForest—is built. Metrics like the f1-score and correctness score are used to assess the correctness of the system.