The availability of corpora annotated for discourse relations is limited and discourse relation classification performance varies greatly depending on both language and domain. This is a problem for downstream applications that are intended for a language (i.e., not English) or a domain (i.e., not financial news) with comparatively low coverage for discourse annotations. In this paper, we experiment with a state-of-the-art model for discourse relation classification, originally developed for English, extend it to a multi-lingual setting (testing on Italian, Portuguese and Turkish), and employ a simple, yet effective method to mark out-of-domain training instances. By doing so, we aim to contribute to better generalization and more robust discourse relation classification performance across both language and domain.
We present a pipeline for multi-lingual Shallow Discourse Parsing. The pipeline exploits Machine Translation and Word Alignment, by translating any incoming non-English input text into English, applying an English discourse parser, and projecting the found relations onto the original input text through word alignments. While the purpose of the pipeline is to provide rudimentary discourse relation annotations for low-resource languages, in order to get an idea of performance, we evaluate it on the sub-task of discourse connective identification for several languages for which gold data are available. We experiment with different setups of our modular pipeline architecture and analyze intermediate results. Our code is made available on GitHub.
We investigate disputes in the United Nations Security Council (UNSC) by studying the linguistic means of expressing conflicts. As a result, we present the UNSC Conflict Corpus (UNSCon), a collection of 87 UNSC speeches that are annotated for conflicts. We explain and motivate our annotation scheme and report on a series of experiments for automatic conflict classification. Further, we demonstrate the difficulty when dealing with diplomatic language - which is highly complex and often implicit along various dimensions - by providing corpus examples, readability scores, and classification results.
We present an extension of the SynSemClass Event-type Ontology, originally conceived as a bilingual Czech-English resource. We added German entries to the classes representing the concepts of the ontology. Having a different starting point than the original work (unannotated parallel corpus without links to a valency lexicon and, of course, different existing lexical resources), it was a challenge to adapt the annotation guidelines, the data model and the tools used for the original version. We describe the process and results of working in such a setup. We also show the next steps to adapt the annotation process, data structures and formats and tools necessary to make the addition of a new language in the future more smooth and efficient, and possibly to allow for various teams to work on SynSemClass extensions to many languages concurrently. We also present the latest release which contains the results of adding German, freely available for download as well as for online access.
The role of an author’s L1 in SLA can be challenging for automated CEFR classification, in that texts from different L1 groups may be too heterogeneous to combine them as training data. We experiment with recent debiasing approaches by attempting to devoid textual representations of L1 features. This results in a more homogeneous group when aggregating CEFR-annotated texts from different L1 groups, leading to better classification performance. Using iterative null-space projection, we marginally improve classification performance for a linear classifier by 1 point. An MLP (e.g. non-linear) classifier remains unaffected by this procedure. We discuss possible directions of future work to attempt to increase this performance gain.
We present a data set consisting of German news articles labeled for political bias on a five-point scale in a semi-supervised way. While earlier work on hyperpartisan news detection uses binary classification (i.e., hyperpartisan or not) and English data, we argue for a more fine-grained classification, covering the full political spectrum (i.e., far-left, left, centre, right, far-right) and for extending research to German data. Understanding political bias helps in accurately detecting hate speech and online abuse. We experiment with different classification methods for political bias detection. Their comparatively low performance (a macro-F1 of 43 for our best setup, compared to a macro-F1 of 79 for the binary classification task) underlines the need for more (balanced) data annotated in a fine-grained way.
In this paper we focus on connective identification and sense classification for explicit discourse relations in German, as two individual sub-tasks of the overarching Shallow Discourse Parsing task. We successively augment a purely-empirical approach based on contextualised embeddings with linguistic knowledge encoded in a connective lexicon. In this way, we improve over published results for connective identification, achieving a final F1-score of 87.93; and we introduce, to the best of our knowledge, first results for German sense classification, achieving an F1-score of 87.13. Our approach demonstrates that a connective lexicon can be a valuable resource for those languages that do not have a large PDTB-style-annotated coprus available.
Shallow Discourse Parsing (SDP), the identification of coherence relations between text spans, relies on large amounts of training data, which so far exists only for English - any other language is in this respect an under-resourced one. For those languages where machine translation from English is available with reasonable quality, MT in conjunction with annotation projection can be an option for producing an SDP resource. In our study, we translate the English Penn Discourse TreeBank into German and experiment with various methods of annotation projection to arrive at the German counterpart of the PDTB. We describe the key characteristics of the corpus as well as some typical sources of errors encountered during its creation. Then we evaluate the GermanPDTB by training components for selected sub-tasks of discourse parsing on this silver data and compare performance to the same components when trained on the gold, original PDTB corpus.
We present the Potsdam Commentary Corpus 2.2, a German corpus of news editorials annotated on several different levels. New in the 2.2 version of the corpus are two additional annotation layers for coherence relations following the Penn Discourse TreeBank framework. Specifically, we add relation senses to an already existing layer of discourse connectives and their arguments, and we introduce a new layer with additional coherence relation types, resulting in a German corpus that mirrors the PDTB. The aim of this is to increase usability of the corpus for the task of shallow discourse parsing. In this paper, we provide inter-annotator agreement figures for the new annotations and compare corpus statistics based on the new annotations to the equivalent statistics extracted from the PDTB.
We explore to what extent knowledge about the pre-trained language model that is used is beneficial for the task of abstractive summarization. To this end, we experiment with conditioning the encoder and decoder of a Transformer-based neural model on the BERT language model. In addition, we propose a new method of BERT-windowing, which allows chunk-wise processing of texts longer than the BERT window size. We also explore how locality modeling, i.e., the explicit restriction of calculations to the local context, can affect the summarization ability of the Transformer. This is done by introducing 2-dimensional convolutional self-attention into the first layers of the encoder. The results of our models are compared to a baseline and the state-of-the-art models on the CNN/Daily Mail dataset. We additionally train our model on the SwissText dataset to demonstrate usability on German. Both models outperform the baseline in ROUGE scores on two datasets and show its superiority in a manual qualitative analysis.
We present a workflow manager for the flexible creation and customisation of NLP processing pipelines. The workflow manager addresses challenges in interoperability across various different NLP tasks and hardware-based resource usage. Based on the four key principles of generality, flexibility, scalability and efficiency, we present the first version of the workflow manager by providing details on its custom definition language, explaining the communication components and the general system architecture and setup. We currently implement the system, which is grounded and motivated by real-world industry use cases in several innovation and transfer projects.
In this exploratory study, we attempt to automatically induce PDTB-style relations from RST trees. We work with a German corpus of news commentary articles, annotated for RST trees and explicit PDTB-style relations and we focus on inducing the implicit relations in an automated way. Preliminary results look promising as a high-precision (but low-recall) way of finding implicit relations where there is no shallow structure annotated at all, but mapping proves more difficult in cases where EDUs and relation arguments overlap, yet do not seem to signal the same relation.
We describe a series of experiments applied to data sets from different languages and genres annotated for coherence relations according to different theoretical frameworks. Specifically, we investigate the feasibility of a unified (theory-neutral) approach toward discourse segmentation; a process which divides a text into minimal discourse units that are involved in s coherence relation. We apply a RandomForest and an LSTM based approach for all data sets, and we improve over a simple baseline assuming simple sentence or clause-like segmentation. Performance however varies a lot depending on language, and more importantly genre, with f-scores ranging from 73.00 to 94.47.
We are working on an end-to-end Shallow Discourse Parsing system for German and in this paper focus on the first subtask: the identification of explicit connectives. Starting with the feature set from an English system and a Random Forest classifier, we evaluate our approach on a (relatively small) German annotated corpus, the Potsdam Commentary Corpus. We introduce new features and experiment with including additional training data obtained through annotation projection and achieve an f-score of 83.89.
We present a new lexicon of English discourse connectives called DiMLex-Eng, built by merging information from two annotated corpora and an additional list of relation signals from the literature. The format follows the German connective lexicon DiMLex, which provides a cross-linguistically applicable XML schema. DiMLex-Eng contains 149 English connectives, and gives information on syntactic categories, discourse semantics and non-connective uses (if any). We report on the development steps and discuss design decisions encountered in the lexicon expansion phase. The resource is freely available for use in studies of discourse structure and computational applications.
We present an approach at identifying a specific class of events, movement action events (MAEs), in a data set that consists of ca. 2,800 personal letters exchanged by the German architect Erich Mendelsohn and his wife, Luise. A backend system uses these and other semantic analysis results as input for an authoring environment that digital curators can use to produce new pieces of digital content. In our example case, the human expert will receive recommendations from the system with the goal of putting together a travelogue, i.e., a description of the trips and journeys undertaken by the couple. We describe the components and architecture and also apply the system to news data.
We present a prototypical content curation dashboard, to be used in the newsroom, and several of its underlying semantic content analysis components (such as named entity recognition, entity linking, summarisation and temporal expression analysis). The idea is to enable journalists (a) to process incoming content (agency reports, twitter feeds, reports, blog posts, social media etc.) and (b) to create new articles more easily and more efficiently. The prototype system also allows the automatic annotation of events in incoming content for the purpose of supporting journalists in identifying important, relevant or meaningful events and also to adapt the content currently in production accordingly in a semi-automatic way. One of our long-term goals is to support journalists building up entire storylines with automatic means. In the present prototype they are generated in a backend service using clustering methods that operate on the extracted events.
We present a system for the detection of the stance of headlines with regard to their corresponding article bodies. The approach can be applied in fake news, especially clickbait detection scenarios. The component is part of a larger platform for the curation of digital content; we consider veracity and relevancy an increasingly important part of curating online information. We want to contribute to the debate on how to deal with fake news and related online phenomena with technological means, by providing means to separate related from unrelated headlines and further classifying the related headlines. On a publicly available data set annotated for the stance of headlines with regard to their corresponding article bodies, we achieve a (weighted) accuracy score of 89.59.