Peter Fankhauser


2022

pdf bib
Count-Based and Predictive Language Models for Exploring DeReKo
Peter Fankhauser | Marc Kupietz
Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-10)

We present the use of count-based and predictive language models for exploring language use in the German Reference Corpus DeReKo. For collocation analysis along the syntagmatic axis we employ traditional association measures based on co-occurrence counts as well as predictive association measures derived from the output weights of skipgram word embeddings. For inspecting the semantic neighbourhood of words along the paradigmatic axis we visualize the high dimensional word embeddings in two dimensions using t-stochastic neighbourhood embeddings. Together, these visualizations provide a complementary, explorative approach to analysing very large corpora in addition to corpus querying. Moreover, we discuss count-based and predictive models w.r.t. scalability and maintainability in very large corpora.

2021

pdf bib
Data-driven Identification of Idioms in Song Lyrics
Miriam Amin | Peter Fankhauser | Marc Kupietz | Roman Schneider
Proceedings of the 17th Workshop on Multiword Expressions (MWE 2021)

The automatic recognition of idioms poses a challenging problem for NLP applications. Whereas native speakers can intuitively handle multiword expressions whose compositional meanings are hard to trace back to individual word semantics, there is still ample scope for improvement regarding computational approaches. We assume that idiomatic constructions can be characterized by gradual intensities of semantic non-compositionality, formal fixedness, and unusual usage context, and introduce a number of measures for these characteristics, comprising count-based and predictive collocation measures together with measures of context (un)similarity. We evaluate our approach on a manually labelled gold standard, derived from a corpus of German pop lyrics. To this end, we apply a Random Forest classifier to analyze the individual contribution of features for automatically detecting idioms, and study the trade-off between recall and precision. Finally, we evaluate the classifier on an independent dataset of idioms extracted from a list of Wikipedia idioms, achieving state-of-the art accuracy.

2020

pdf bib
Evaluating a Dependency Parser on DeReKo
Peter Fankhauser | Bich-Ngoc Do | Marc Kupietz
Proceedings of the 8th Workshop on Challenges in the Management of Large Corpora

We evaluate a graph-based dependency parser on DeReKo, a large corpus of contemporary German. The dependency parser is trained on the German dataset from the SPMRL 2014 Shared Task which contains text from the news domain, whereas DeReKo also covers other domains including fiction, science, and technology. To avoid the need for costly manual annotation of the corpus, we use the parser’s probability estimates for unlabeled and labeled attachment as main evaluation criterion. We show that these probability estimates are highly correlated with the actual attachment scores on a manually annotated test set. On this basis, we compare estimated parsing scores for the individual domains in DeReKo, and show that the scores decrease with increasing distance of a domain to the training corpus.

2017

pdf bib
The Making of the Royal Society Corpus
Jörg Knappen | Stefan Fischer | Hannah Kermes | Elke Teich | Peter Fankhauser
Proceedings of the NoDaLiDa 2017 Workshop on Processing Historical Language

2014

pdf bib
Exploring and Visualizing Variation in Language Resources
Peter Fankhauser | Jörg Knappen | Elke Teich
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

Language resources are often compiled for the purpose of variational analysis, such as studying differences between genres, registers, and disciplines, regional and diachronic variation, influence of gender, cultural context, etc. Often the sheer number of potentially interesting contrastive pairs can get overwhelming due to the combinatorial explosion of possible combinations. In this paper, we present an approach that combines well understood techniques for visualization heatmaps and word clouds with intuitive paradigms for exploration drill down and side by side comparison to facilitate the analysis of language variation in such highly combinatorial situations. Heatmaps assist in analyzing the overall pattern of variation in a corpus, and word clouds allow for inspecting variation at the level of words.

pdf bib
Data Mining with Shallow vs. Linguistic Features to Study Diversification of Scientific Registers
Stefania Degaetano-Ortlieb | Peter Fankhauser | Hannah Kermes | Ekaterina Lapshinova-Koltunski | Noam Ordan | Elke Teich
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

We present a methodology to analyze the linguistic evolution of scientific registers with data mining techniques, comparing the insights gained from shallow vs. linguistic features. The focus is on selected scientific disciplines at the boundaries to computer science (computational linguistics, bioinformatics, digital construction, microelectronics). The data basis is the English Scientific Text Corpus (SCITEX) which covers a time range of roughly thirty years (1970/80s to early 2000s) (Degaetano-Ortlieb et al., 2013; Teich and Fankhauser, 2010). In particular, we investigate the diversification of scientific registers over time. Our theoretical basis is Systemic Functional Linguistics (SFL) and its specific incarnation of register theory (Halliday and Hasan, 1985). In terms of methods, we combine corpus-based methods of feature extraction and data mining techniques.