Philippe Cudré-Mauroux
2019
SECTOR: A Neural Model for Coherent Topic Segmentation and Classification
Sebastian Arnold
|
Rudolf Schneider
|
Philippe Cudré-Mauroux
|
Felix A. Gers
|
Alexander Löser
Transactions of the Association for Computational Linguistics, Volume 7
When searching for information, a human reader first glances over a document, spots relevant sections, and then focuses on a few sentences for resolving her intention. However, the high variance of document structure complicates the identification of the salient topic of a given section at a glance. To tackle this challenge, we present SECTOR, a model to support machine reading systems by segmenting documents into coherent sections and assigning topic labels to each section. Our deep neural network architecture learns a latent topic embedding over the course of a document. This can be leveraged to classify local topics from plain text and segment a document at topic shifts. In addition, we contribute WikiSection, a publicly available data set with 242k labeled sections in English and German from two distinct domains: diseases and cities. From our extensive evaluation of 20 architectures, we report a highest score of 71.6% F1 for the segmentation and classification of 30 topics from the English city domain, scored by our SECTOR long short-term memory model with Bloom filter embeddings and bidirectional segmentation. This is a significant improvement of 29.5 points F1 over state-of-the-art CNN classifiers with baseline segmentation.
2018
Sanaphor++: Combining Deep Neural Networks with Semantics for Coreference Resolution
Julien Plu
|
Roman Prokofyev
|
Alberto Tonon
|
Philippe Cudré-Mauroux
|
Djellel Eddine Difallah
|
Raphaël Troncy
|
Giuseppe Rizzo
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)
Search
Fix data
Co-authors
- Sebastian Arnold 1
- Djellel Eddine Difallah 1
- Felix A. Gers 1
- Alexander Löser 1
- Julien Plu 1
- show all...