Prabin Bhandari
2024
From Text to Maps: LLM-Driven Extraction and Geotagging of Epidemiological Data
Karlyn K. Harrod
|
Prabin Bhandari
|
Antonios Anastasopoulos
Proceedings of the Third Workshop on NLP for Positive Impact
Epidemiological datasets are essential for public health analysis and decision-making, yet they remain scarce and often difficult to compile due to inconsistent data formats, language barriers, and evolving political boundaries. Traditional methods of creating such datasets involve extensive manual effort and are prone to errors in accurate location extraction. To address these challenges, we propose utilizing large language models (LLMs) to automate the extraction and geotagging of epidemiological data from textual documents. Our approach significantly reduces the manual effort required, limiting human intervention to validating a subset of records against text snippets and verifying the geotagging reasoning, as opposed to reviewing multiple entire documents manually to extract, clean, and geotag. Additionally, the LLMs identify information often overlooked by human annotators, further enhancing the dataset’s completeness. Our findings demonstrate that LLMs can be effectively used to semi-automate the extraction and geotagging of epidemiological data, offering several key advantages: (1) comprehensive information extraction with minimal risk of missing critical details; (2) minimal human intervention; (3) higher-resolution data with more precise geotagging; and (4) significantly reduced resource demands compared to traditional methods.
2023
Trustworthiness of Children Stories Generated by Large Language Models
Prabin Bhandari
|
Hannah Brennan
Proceedings of the 16th International Natural Language Generation Conference
Large Language Models (LLMs) have shown a tremendous capacity for generating literary text. However, their effectiveness in generating children’s stories has yet to be thoroughly examined. In this study, we evaluate the trustworthiness of children’s stories generated by LLMs using various measures, and we compare and contrast our results with both old and new children’s stories to better assess their significance. Our findings suggest that LLMs still struggle to generate children’s stories at the level of quality and nuance found in actual stories.
Search