Prithvijit Chattopadhyay
2019
Improving Generative Visual Dialog by Answering Diverse Questions
Vishvak Murahari
|
Prithvijit Chattopadhyay
|
Dhruv Batra
|
Devi Parikh
|
Abhishek Das
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Prior work on training generative Visual Dialog models with reinforcement learning ((Das et al., ICCV 2017) has explored a Q-Bot-A-Bot image-guessing game and shown that this ‘self-talk’ approach can lead to improved performance at the downstream dialog-conditioned image-guessing task. However, this improvement saturates and starts degrading after a few rounds of interaction, and does not lead to a better Visual Dialog model. We find that this is due in part to repeated interactions between Q-Bot and A-BOT during self-talk, which are not informative with respect to the image. To improve this, we devise a simple auxiliary objective that incentivizes Q-Bot to ask diverse questions, thus reducing repetitions and in turn enabling A-Bot to explore a larger state space during RL i.e. be exposed to more visual concepts to talk about, and varied questions to answer. We evaluate our approach via a host of automatic metrics and human studies, and demonstrate that it leads to better dialog, i.e. dialog that is more diverse (i.e. less repetitive), consistent (i.e. has fewer conflicting exchanges), fluent (i.e., more human-like), and detailed, while still being comparably image-relevant as prior work and ablations.
2018
Do explanations make VQA models more predictable to a human?
Arjun Chandrasekaran
|
Viraj Prabhu
|
Deshraj Yadav
|
Prithvijit Chattopadhyay
|
Devi Parikh
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
A rich line of research attempts to make deep neural networks more transparent by generating human-interpretable ‘explanations’ of their decision process, especially for interactive tasks like Visual Question Answering (VQA). In this work, we analyze if existing explanations indeed make a VQA model — its responses as well as failures — more predictable to a human. Surprisingly, we find that they do not. On the other hand, we find that human-in-the-loop approaches that treat the model as a black-box do.
Search
Fix data
Co-authors
- Devi Parikh 2
- Dhruv Batra 1
- Arjun Chandrasekaran 1
- Abhishek Das 1
- Vishvak Murahari 1
- show all...