Puhai Yang
2024
Rethinking Task-Oriented Dialogue Systems: From Complex Modularity to Zero-Shot Autonomous Agent
Heng-Da Xu
|
Xian-Ling Mao
|
Puhai Yang
|
Fanshu Sun
|
Heyan Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Task-oriented dialogue (TOD) systems are predominantly designed to be composed of several functional modules (e.g. dialogue state tracker, dialogue policy, natural language generation) whether they are pipeline or end-to-end architectures. However, this modular design not only heavily relies on massive fully-annotated data, but also suffers from many intrinsic drawbacks, such as serious error accumulation, poor generalization ability, high customization cost, and low fault tolerance rate. In this paper, we rethink the architecture of the task-oriented dialogue systems and propose a novel fully zero-shot autonomous TOD agent, named AutoTOD, where all the delicate modules in traditional TOD systems are deprecated and all it needs is a general-purpose instruction-following language model (e.g. GPT-4). AutoTOD only leverages a simple instruction schema consisting of the description of tasks and external APIs, and can autonomously decide what to do at each dialogue turn, including asking for information, calling APIs, summarizing API results, and correcting previous mistakes. Moreover, we propose a simulation-based evaluation framework to better validate the abilities of TOD models in real-life scenarios. Extensive experiments conducted on the MultiWOZ and SGD datasets show the superior task completion ability and flexible language skills of AutoTOD.
2021
Comprehensive Study: How the Context Information of Different Granularity Affects Dialogue State Tracking?
Puhai Yang
|
Heyan Huang
|
Xian-Ling Mao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Dialogue state tracking (DST) plays a key role in task-oriented dialogue systems to monitor the user’s goal. In general, there are two strategies to track a dialogue state: predicting it from scratch and updating it from previous state. The scratch-based strategy obtains each slot value by inquiring all the dialogue history, and the previous-based strategy relies on the current turn dialogue to update the previous dialogue state. However, it is hard for the scratch-based strategy to correctly track short-dependency dialogue state because of noise; meanwhile, the previous-based strategy is not very useful for long-dependency dialogue state tracking. Obviously, it plays different roles for the context information of different granularity to track different kinds of dialogue states. Thus, in this paper, we will study and discuss how the context information of different granularity affects dialogue state tracking. First, we explore how greatly different granularities affect dialogue state tracking. Then, we further discuss how to combine multiple granularities for dialogue state tracking. Finally, we apply the findings about context granularity to few-shot learning scenario. Besides, we have publicly released all codes.