This paper introduces the innovative “LLMs-as-Instructors” framework, which leverages the advanced Large Language Models (LLMs) to autonomously enhance the training of smaller target models. Inspired by the theory of “Learning from Errors”, this framework employs an instructor LLM to meticulously analyze the specific errors within a target model, facilitating targeted and efficient training cycles. Within this framework, we implement two strategies: “Learning from Error,” which focuses solely on incorrect responses to tailor training data, and “Learning from Error by Contrast,” which uses contrastive learning to analyze both correct and incorrect responses for a deeper understanding of errors. Our empirical studies, conducted with several open-source models, demonstrate significant improvements across multiple benchmarks, including mathematical reasoning, coding abilities, and factual knowledge. Notably, the refined Llama-3-8b-Instruction has outperformed ChatGPT, illustrating the effectiveness of our approach. By leveraging the strengths of both strategies, we have attained a more balanced performance improvement on both in-domain and out-of-domain benchmarks.
Translate-train is a general training approach to multilingual tasks. The key idea is to use the translator of the target language to generate training data to mitigate the gap between the source and target languages. However, its performance is often hampered by the artifacts in the translated texts (translationese). We discover that such artifacts have common patterns in different languages and can be modeled by deep learning, and subsequently propose an approach to conduct translate-train using Translationese Embracing the effect of Artifacts (TEA). TEA learns to mitigate such effect on the training data of a source language (whose original and translationese are both available), and applies the learned module to facilitate the inference on the target language. Extensive experiments on the multilingual QA dataset TyDiQA demonstrate that TEA outperforms strong baselines.
Out-of-distribution (OOD) settings are used to measure a model’s performance when the distribution of the test data is different from that of the training data. NLU models are known to suffer in OOD. We study this issue from the perspective of causality, which sees confounding bias as the reason for models to learn spurious correlations. While a common solution is to perform intervention, existing methods handle only known and single confounder, but in many NLU tasks the confounders can be both unknown and multifactorial. In this paper, we propose a novel interventional training method called Bottom-up Automatic Intervention (BAI) that performs multi-granular intervention with identified multifactorial confounders. Our experiments on three NLU tasks, namely, natural language inference, fact verification and paraphrase identification, show the effectiveness of BAI for tackling OOD settings.
Pre-trained multilingual language models, e.g., multilingual-BERT, are widely used in cross-lingual tasks, yielding the state-of-the-art performance. However, such models suffer from a large performance gap between source and target languages, especially in the zero-shot setting, where the models are fine-tuned only on English but tested on other languages for the same task. We tackle this issue by incorporating language-agnostic information, specifically, universal syntax such as dependency relations and POS tags, into language models, based on the observation that universal syntax is transferable across different languages. Our approach, called COunterfactual SYntax (COSY), includes the design of SYntax-aware networks as well as a COunterfactual training method to implicitly force the networks to learn not only the semantics but also the syntax. To evaluate COSY, we conduct cross-lingual experiments on natural language inference and question answering using mBERT and XLM-R as network backbones. Our results show that COSY achieves the state-of-the-art performance for both tasks, without using auxiliary training data.