Qing Gu


2023

pdf bib
Improving Domain Generalization for Prompt-Aware Essay Scoring via Disentangled Representation Learning
Zhiwei Jiang | Tianyi Gao | Yafeng Yin | Meng Liu | Hua Yu | Zifeng Cheng | Qing Gu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automated Essay Scoring (AES) aims to score essays written in response to specific prompts. Many AES models have been proposed, but most of them are either prompt-specific or prompt-adaptive and cannot generalize well on “unseen” prompts. This work focuses on improving the generalization ability of AES models from the perspective of domain generalization, where the data of target prompts cannot be accessed during training. Specifically, we propose a prompt-aware neural AES model to extract comprehensive representation for essay scoring, including both prompt-invariant and prompt-specific features. To improve the generalization of representation, we further propose a novel disentangled representation learning framework. In this framework, a contrastive norm-angular alignment strategy and a counterfactual self-training strategy are designed to disentangle the prompt-invariant information and prompt-specific information in representation. Extensive experimental results on datasets of both ASAP and TOEFL11 demonstrate the effectiveness of our method under the domain generalization setting.

pdf bib
Aggregating Multiple Heuristic Signals as Supervision for Unsupervised Automated Essay Scoring
Cong Wang | Zhiwei Jiang | Yafeng Yin | Zifeng Cheng | Shiping Ge | Qing Gu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automated Essay Scoring (AES) aims to evaluate the quality score for input essays. In this work, we propose a novel unsupervised AES approach ULRA, which does not require groundtruth scores of essays for training. The core idea of our ULRA is to use multiple heuristic quality signals as the pseudo-groundtruth, and then train a neural AES model by learning from the aggregation of these quality signals. To aggregate these inconsistent quality signals into a unified supervision, we view the AES task as a ranking problem, and design a special Deep Pairwise Rank Aggregation (DPRA) loss for training. In the DPRA loss, we set a learnable confidence weight for each signal to address the conflicts among signals, and train the neural AES model in a pairwise way to disentangle the cascade effect among partial-order pairs. Experiments on eight prompts of ASPA dataset show that ULRA achieves the state-of-the-art performance compared with previous unsupervised methods in terms of both transductive and inductive settings. Further, our approach achieves comparable performance with many existing domain-adapted supervised models, showing the effectiveness of ULRA. The code is available at https://github.com/tenvence/ulra.

2020

pdf bib
A Symmetric Local Search Network for Emotion-Cause Pair Extraction
Zifeng Cheng | Zhiwei Jiang | Yafeng Yin | Hua Yu | Qing Gu
Proceedings of the 28th International Conference on Computational Linguistics

Emotion-cause pair extraction (ECPE) is a new task which aims at extracting the potential clause pairs of emotions and corresponding causes in a document. To tackle this task, a two-step method was proposed by previous study which first extracted emotion clauses and cause clauses individually, then paired the emotion and cause clauses, and filtered out the pairs without causality. Different from this method that separated the detection and the matching of emotion and cause into two steps, we propose a Symmetric Local Search Network (SLSN) model to perform the detection and matching simultaneously by local search. SLSN consists of two symmetric subnetworks, namely the emotion subnetwork and the cause subnetwork. Each subnetwork is composed of a clause representation learner and a local pair searcher. The local pair searcher is a specially-designed cross-subnetwork component which can extract the local emotion-cause pairs. Experimental results on the ECPE corpus demonstrate the superiority of our SLSN over existing state-of-the-art methods.

2018

pdf bib
Enriching Word Embeddings with Domain Knowledge for Readability Assessment
Zhiwei Jiang | Qing Gu | Yafeng Yin | Daoxu Chen
Proceedings of the 27th International Conference on Computational Linguistics

In this paper, we present a method which learns the word embedding for readability assessment. For the existing word embedding models, they typically focus on the syntactic or semantic relations of words, while ignoring the reading difficulty, thus they may not be suitable for readability assessment. Hence, we provide the knowledge-enriched word embedding (KEWE), which encodes the knowledge on reading difficulty into the representation of words. Specifically, we extract the knowledge on word-level difficulty from three perspectives to construct a knowledge graph, and develop two word embedding models to incorporate the difficulty context derived from the knowledge graph to define the loss functions. Experiments are designed to apply KEWE for readability assessment on both English and Chinese datasets, and the results demonstrate both effectiveness and potential of KEWE.

2015

pdf bib
A Graph-based Readability Assessment Method using Word Coupling
Zhiwei Jiang | Gang Sun | Qing Gu | Tao Bai | Daoxu Chen
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing