Rajeev Verma
2022
The lack of theory is painful: Modeling Harshness in Peer Review Comments
Rajeev Verma
|
Rajarshi Roychoudhury
|
Tirthankar Ghosal
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
The peer-review system has primarily remained the central process of all science communications. However, research has shown that the process manifests a power-imbalance scenario where the reviewer enjoys a position where their comments can be overly critical and wilfully obtuse without being held accountable. This brings into question the sanctity of the peer-review process, turning it into a fraught and traumatic experience for authors. A little more effort to still remain critical but be constructive in the feedback would help foster a progressive outcome from the peer-review process. In this paper, we argue to intervene at the step where this power imbalance actually begins in the system. To this end, we develop the first dataset of peer-review comments with their real-valued harshness scores. We build our dataset by using the popular Best-Worst-Scaling mechanism. We show the utility of our dataset for text moderation in peer reviews to make review reports less hurtful and more welcoming. We release our dataset and associated codes in https://github.com/Tirthankar-Ghosal/moderating-peer-review-harshness. Our research is one step towards helping create constructive peer-review reports.
2019
DeepSentiPeer: Harnessing Sentiment in Review Texts to Recommend Peer Review Decisions
Tirthankar Ghosal
|
Rajeev Verma
|
Asif Ekbal
|
Pushpak Bhattacharyya
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Automatically validating a research artefact is one of the frontiers in Artificial Intelligence (AI) that directly brings it close to competing with human intellect and intuition. Although criticised sometimes, the existing peer review system still stands as the benchmark of research validation. The present-day peer review process is not straightforward and demands profound domain knowledge, expertise, and intelligence of human reviewer(s), which is somewhat elusive with the current state of AI. However, the peer review texts, which contains rich sentiment information of the reviewer, reflecting his/her overall attitude towards the research in the paper, could be a valuable entity to predict the acceptance or rejection of the manuscript under consideration. Here in this work, we investigate the role of reviewer sentiment embedded within peer review texts to predict the peer review outcome. Our proposed deep neural architecture takes into account three channels of information: the paper, the corresponding reviews, and review’s polarity to predict the overall recommendation score as well as the final decision. We achieve significant performance improvement over the baselines (∼ 29% error reduction) proposed in a recently released dataset of peer reviews. An AI of this kind could assist the editors/program chairs as an additional layer of confidence, especially when non-responding/missing reviewers are frequent in present day peer review.