Ran Ding
2019
Topic Modeling with Wasserstein Autoencoders
Feng Nan
|
Ran Ding
|
Ramesh Nallapati
|
Bing Xiang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
We propose a novel neural topic model in the Wasserstein autoencoders (WAE) framework. Unlike existing variational autoencoder based models, we directly enforce Dirichlet prior on the latent document-topic vectors. We exploit the structure of the latent space and apply a suitable kernel in minimizing the Maximum Mean Discrepancy (MMD) to perform distribution matching. We discover that MMD performs much better than the Generative Adversarial Network (GAN) in matching high dimensional Dirichlet distribution. We further discover that incorporating randomness in the encoder output during training leads to significantly more coherent topics. To measure the diversity of the produced topics, we propose a simple topic uniqueness metric. Together with the widely used coherence measure NPMI, we offer a more wholistic evaluation of topic quality. Experiments on several real datasets show that our model produces significantly better topics than existing topic models.
2018
Coherence-Aware Neural Topic Modeling
Ran Ding
|
Ramesh Nallapati
|
Bing Xiang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
Topic models are evaluated based on their ability to describe documents well (i.e. low perplexity) and to produce topics that carry coherent semantic meaning. In topic modeling so far, perplexity is a direct optimization target. However, topic coherence, owing to its challenging computation, is not optimized for and is only evaluated after training. In this work, under a neural variational inference framework, we propose methods to incorporate a topic coherence objective into the training process. We demonstrate that such a coherence-aware topic model exhibits a similar level of perplexity as baseline models but achieves substantially higher topic coherence.