Reem Mahmoud


2023

pdf bib
HICMA: The Handwriting Identification for Calligraphy and Manuscripts in Arabic Dataset
Anis Ismail | Zena Kamel | Reem Mahmoud
Proceedings of ArabicNLP 2023

Arabic is one of the most globally spoken languages with more than 313 million speakers worldwide. Arabic handwriting is known for its cursive nature and the variety of writing styles used. Despite the increase in effort to digitize artistic and historical elements, no public dataset was released to deal with Arabic text recognition for realistic manuscripts and calligraphic text. We present the Handwriting Identification of Manuscripts and Calligraphy in Arabic (HICMA) dataset as the first publicly available dataset with real-world and diverse samples of Arabic handwritten text in manuscripts and calligraphy. With more than 5,000 images across five different styles, the HICMA dataset includes image-text pairs and style labels for all images. We further present a comparison of the current state-of-the-art optical character recognition models in Arabic and benchmark their performance on the HICMA dataset, which serves as a baseline for future works. Both the HICMA dataset and its benchmarking tool are made available to the public under the CC BY-NC 4.0 license in the hope that the presented work opens the door to further enhancements of complex Arabic text recognition.

2021

pdf bib
Empathetic BERT2BERT Conversational Model: Learning Arabic Language Generation with Little Data
Tarek Naous | Wissam Antoun | Reem Mahmoud | Hazem Hajj
Proceedings of the Sixth Arabic Natural Language Processing Workshop

Enabling empathetic behavior in Arabic dialogue agents is an important aspect of building human-like conversational models. While Arabic Natural Language Processing has seen significant advances in Natural Language Understanding (NLU) with language models such as AraBERT, Natural Language Generation (NLG) remains a challenge. The shortcomings of NLG encoder-decoder models are primarily due to the lack of Arabic datasets suitable to train NLG models such as conversational agents. To overcome this issue, we propose a transformer-based encoder-decoder initialized with AraBERT parameters. By initializing the weights of the encoder and decoder with AraBERT pre-trained weights, our model was able to leverage knowledge transfer and boost performance in response generation. To enable empathy in our conversational model, we train it using the ArabicEmpatheticDialogues dataset and achieve high performance in empathetic response generation. Specifically, our model achieved a low perplexity value of 17.0 and an increase in 5 BLEU points compared to the previous state-of-the-art model. Also, our proposed model was rated highly by 85 human evaluators, validating its high capability in exhibiting empathy while generating relevant and fluent responses in open-domain settings.