Rolf-Rainer Grigat


2020

pdf bib
Optimised Preprocessing for Automatic Mouth Gesture Classification
Maren Brumm | Rolf-Rainer Grigat
Proceedings of the LREC2020 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives

Mouth gestures are facial expressions in sign language, that do not refer to lip patterns of a spoken language. Research on this topic has been limited so far. The aim of this work is to automatically classify mouth gestures from video material by training a neural network. This could render time-consuming manual annotation unnecessary and help advance the field of automatic sign language translation. However, it is a challenging task due to the little data available as training material and the similarity of different mouth gesture classes. In this paper we focus on the preprocessing of the data, such as finding the area of the face important for mouth gesture recognition. Furthermore we analyse the duration of mouth gestures and determine the optimal length of video clips for classification. Our experiments show, that this can improve the classification results significantly and helps to reach a near human accuracy.