Rong Ge


2024

pdf bib
ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods
Roy Xie | Junlin Wang | Ruomin Huang | Minxing Zhang | Rong Ge | Jian Pei | Neil Zhenqiang Gong | Bhuwan Dhingra
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The rapid scaling of large language models (LLMs) has raised concerns about the transparency and fair use of the data used in their pretraining. Detecting such content is challenging due to the scale of the data and limited exposure of each instance during training. We propose ReCaLL (Relative Conditional Log-Likelihood), a novel membership inference attack (MIA) to detect LLMs’ pretraining data by leveraging their conditional language modeling capabilities. ReCaLL examines the relative change in conditional log-likelihoods when prefixing target data points with non-member context. Our empirical findings show that conditioning member data on non-member prefixes induces a larger decrease in log-likelihood compared to non-member data. We conduct comprehensive experiments and show that ReCaLL achieves state-of-the-art performance on the WikiMIA dataset, even with random and synthetic prefixes, and can be further improved using an ensemble approach. Moreover, we conduct an in-depth analysis of LLMs’ behavior with different membership contexts, providing insights into how LLMs leverage membership information for effective inference at both the sequence and token level.

2023

pdf bib
Do Transformers Parse while Predicting the Masked Word?
Haoyu Zhao | Abhishek Panigrahi | Rong Ge | Sanjeev Arora
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Pre-trained language models have been shown to encode linguistic structures like parse trees in their embeddings while being trained unsupervised. Some doubts have been raised whether the models are doing parsing or only some computation weakly correlated with it. Concretely: (a) Is it possible to explicitly describe transformers with realistic embedding dimensions, number of heads, etc. that are capable of doing parsing — or even approximate parsing? (b) Why do pre-trained models capture parsing structure? This paper takes a step toward answering these questions in the context of generative modeling with PCFGs. We show that masked language models like BERT or RoBERTa of moderate sizes can approximately execute the Inside-Outside algorithm for the English PCFG (Marcus et al., 1993). We also show that the Inside-Outside algorithm is optimal for masked language modeling loss on the PCFG-generated data. We conduct probing experiments on models pre-trained on PCFG-generated data to show that this not only allows recovery of approximate parse tree, but also recovers marginal span probabilities computed by the Inside-Outside algorithm, which suggests an implicit bias of masked language modeling towards this algorithm.