Rong Yan

Also published as:


2024

pdf bib
EpLSA: Synergy of Expert-prefix Mixtures and Task-Oriented Latent Space Adaptation for Diverse Generative Reasoning
Fujun Zhang | Xiangdong Su | Jiang Li | Rong Yan | Guanglai Gao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Existing models for diverse generative reasoning still struggle to generate multiple unique and plausible results. Through an in-depth examination, we argue that it is critical to leverage a mixture of experts as prefixes to enhance the diversity of generated results and make task-oriented adaptation in the latent space of the generation models to improve the quality of the responses. At this point, we propose EpLSA, an innovative model based on the synergy of expert-prefix mixtures and task-oriented latent space adaptation for diverse generative reasoning. Specifically, we use expert-prefixes mixtures to encourage the model to create multiple responses with different semantics and design a loss function to address the problem that the semantics is interfered by the expert-prefixes. Meanwhile, we design a task-oriented adaptation block to make the pre-trained encoder within the generation model more effectively adapted to the pre-trained decoder in the latent space, thus further improving the quality of the generated text. Extensive experiments on three different types of generative reasoning tasks demonstrate that EpLSA outperforms existing baseline models in terms of both the quality and diversity of the generated outputs. Our code is publicly available at https://github.com/IMU-MachineLearningSXD/EpLSA.

2022

pdf bib
基于SoftLexicon和注意力机制的中文因果关系抽取(Chinese Causality Extraction Based on SoftLexicon and Attention Mechanism)
Shilin Cui (崔仕林) | Rong Yan (闫蓉)
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“针对现有中文因果关系抽取方法对因果事件边界难以识别和文本特征表示不充分的问题,提出了一种基于外部词汇信息和注意力机制的中文因果关系抽取模型BiLSTM-TWAM+CRF。该模型首次使用SoftLexicon方法引入外部词汇信息构建词集,解决了因果事件边界难以识别的问题。通过构建的双路关注模块TWAM(Two Way Attention Module),实现了从局部和全局两个角度充分刻画文本特征。实验结果表明,与当前中文因果关系抽取模型相比较,本文方法表现出更优的抽取效果。”