Rostislav Petrov


2020

pdf bib
SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles
Giovanni Da San Martino | Alberto Barrón-Cedeño | Henning Wachsmuth | Rostislav Petrov | Preslav Nakov
Proceedings of the Fourteenth Workshop on Semantic Evaluation

We present the results and the main findings of SemEval-2020 Task 11 on Detection of Propaganda Techniques in News Articles. The task featured two subtasks. Subtask SI is about Span Identification: given a plain-text document, spot the specific text fragments containing propaganda. Subtask TC is about Technique Classification: given a specific text fragment, in the context of a full document, determine the propaganda technique it uses, choosing from an inventory of 14 possible propaganda techniques. The task attracted a large number of participants: 250 teams signed up to participate and 44 made a submission on the test set. In this paper, we present the task, analyze the results, and discuss the system submissions and the methods they used. For both subtasks, the best systems used pre-trained Transformers and ensembles.

2019

pdf bib
Fine-Grained Analysis of Propaganda in News Article
Giovanni Da San Martino | Seunghak Yu | Alberto Barrón-Cedeño | Rostislav Petrov | Preslav Nakov
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Propaganda aims at influencing people’s mindset with the purpose of advancing a specific agenda. Previous work has addressed propaganda detection at document level, typically labelling all articles from a propagandistic news outlet as propaganda. Such noisy gold labels inevitably affect the quality of any learning system trained on them. A further issue with most existing systems is the lack of explainability. To overcome these limitations, we propose a novel task: performing fine-grained analysis of texts by detecting all fragments that contain propaganda techniques as well as their type. In particular, we create a corpus of news articles manually annotated at fragment level with eighteen propaganda techniques and propose a suitable evaluation measure. We further design a novel multi-granularity neural network, and we show that it outperforms several strong BERT-based baselines.