Sadiya Sayara Chowdhury Puspo


2024

pdf bib
MasonPerplexity at Multimodal Hate Speech Event Detection 2024: Hate Speech and Target Detection Using Transformer Ensembles
Amrita Ganguly | Al Nahian Bin Emran | Sadiya Sayara Chowdhury Puspo | Md Nishat Raihan | Dhiman Goswami | Marcos Zampieri
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)

The automatic identification of offensive language such as hate speech is important to keep discussions civil in online communities. Identifying hate speech in multimodal content is a particularly challenging task because offensiveness can be manifested in either words or images or a juxtaposition of the two. This paper presents the MasonPerplexity submission for the Shared Task on Multimodal Hate Speech Event Detection at CASE 2024 at EACL 2024. The task is divided into two sub-tasks: sub-task A focuses on the identification of hate speech and sub-task B focuses on the identification of targets in text-embedded images during political events. We use an XLM-roBERTa-large model for sub-task A and an ensemble approach combining XLM-roBERTa-base, BERTweet-large, and BERT-base for sub-task B. Our approach obtained 0.8347 F1-score in sub-task A and 0.6741 F1-score in sub-task B ranking 3rd on both sub-tasks.

pdf bib
MasonPerplexity at ClimateActivism 2024: Integrating Advanced Ensemble Techniques and Data Augmentation for Climate Activism Stance and Hate Event Identification
Al Nahian Bin Emran | Amrita Ganguly | Sadiya Sayara Chowdhury Puspo | Dhiman Goswami | Md Nishat Raihan
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)

The task of identifying public opinions on social media, particularly regarding climate activism and the detection of hate events, has emerged as a critical area of research in our rapidly changing world. With a growing number of people voicing either to support or oppose to climate-related issues - understanding these diverse viewpoints has become increasingly vital. Our team, MasonPerplexity, participates in a significant research initiative focused on this subject. We extensively test various models and methods, discovering that our most effective results are achieved through ensemble modeling, enhanced by data augmentation techniques like back-translation. In the specific components of this research task, our team achieved notable positions, ranking 5th, 1st, and 6th in the respective sub-tasks, thereby illustrating the effectiveness of our approach in this important field of study.

pdf bib
MasonTigers@LT-EDI-2024: An Ensemble Approach Towards Detecting Homophobia and Transphobia in Social Media Comments
Dhiman Goswami | Sadiya Sayara Chowdhury Puspo | Md Nishat Raihan | Al Nahian Bin Emran
Proceedings of the Fourth Workshop on Language Technology for Equality, Diversity, Inclusion

In this paper, we describe our approaches and results for Task 2 of the LT-EDI 2024 Workshop, aimed at detecting homophobia and/or transphobia across ten languages. Our methodologies include monolingual transformers and ensemble methods, capitalizing on the strengths of each to enhance the performance of the models. The ensemble models worked well, placing our team, MasonTigers, in the top five for eight of the ten languages, as measured by the macro F1 score. Our work emphasizes the efficacy of ensemble methods in multilingual scenarios, addressing the complexities of language-specific tasks.

pdf bib
MentalHelp: A Multi-Task Dataset for Mental Health in Social Media
Nishat Raihan | Sadiya Sayara Chowdhury Puspo | Shafkat Farabi | Ana-Maria Bucur | Tharindu Ranasinghe | Marcos Zampieri
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Early detection of mental health disorders is an essential step in treating and preventing mental health conditions. Computational approaches have been applied to users’ social media profiles in an attempt to identify various mental health conditions such as depression, PTSD, schizophrenia, and eating disorders. The interest in this topic has motivated the creation of various depression detection datasets. However, annotating such datasets is expensive and time-consuming, limiting their size and scope. To overcome this limitation, we present MentalHelp, a large-scale semi-supervised mental disorder detection dataset containing 14 million instances. The corpus was collected from Reddit and labeled in a semi-supervised way using an ensemble of three separate models - flan-T5, Disor-BERT, and Mental-BERT.

pdf bib
MasonTigers at SemEval-2024 Task 9: Solving Puzzles with an Ensemble of Chain-of-Thought Prompts
Nishat Raihan | Dhiman Goswami | Al Nahian Bin Emran | Sadiya Sayara Chowdhury Puspo | Amrita Ganguly | Marcos Zampieri
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

Our paper presents team MasonTigers submission to the SemEval-2024 Task 9 - which provides a dataset of puzzles for testing natural language understanding. We employ large language models (LLMs) to solve this task through several prompting techniques. Zero-shot and few-shot prompting generate reasonably good results when tested with proprietary LLMs, compared to the open-source models. We obtain further improved results with chain-of-thought prompting, an iterative prompting method that breaks down the reasoning process step-by-step. We obtain our best results by utilizing an ensemble of chain-of-thought prompts, placing 2nd in the word puzzle subtask and 13th in the sentence puzzle subtask. The strong performance of prompted LLMs demonstrates their capability for complex reasoning when provided with a decomposition of the thought process. Our work sheds light on how step-wise explanatory prompts can unlock more of the knowledge encoded in the parameters of large models.

pdf bib
MasonTigers at SemEval-2024 Task 8: Performance Analysis of Transformer-based Models on Machine-Generated Text Detection
Sadiya Sayara Chowdhury Puspo | Nishat Raihan | Dhiman Goswami | Al Nahian Bin Emran | Amrita Ganguly | Özlem Uzuner
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This paper presents the MasonTigers entryto the SemEval-2024 Task 8 - Multigenerator, Multidomain, and Multilingual BlackBox Machine-Generated Text Detection. Thetask encompasses Binary Human-Written vs.Machine-Generated Text Classification (TrackA), Multi-Way Machine-Generated Text Classification (Track B), and Human-Machine MixedText Detection (Track C). Our best performing approaches utilize mainly the ensemble ofdiscriminator transformer models along withsentence transformer and statistical machinelearning approaches in specific cases. Moreover, Zero shot prompting and fine-tuning ofFLAN-T5 are used for Track A and B.

pdf bib
MasonTigers at SemEval-2024 Task 1: An Ensemble Approach for Semantic Textual Relatedness
Dhiman Goswami | Sadiya Sayara Chowdhury Puspo | Nishat Raihan | Al Nahian Bin Emran | Amrita Ganguly | Marcos Zampieri
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This paper presents the MasonTigers’ entry to the SemEval-2024 Task 1 - Semantic Textual Relatedness. The task encompasses supervised (Track A), unsupervised (Track B), and cross-lingual (Track C) approaches to semantic textual relatedness across 14 languages. MasonTigers stands out as one of the two teams who participated in all languages across the three tracks. Our approaches achieved rankings ranging from 11th to 21st in Track A, from 1st to 8th in Track B, and from 5th to 12th in Track C. Adhering to the task-specific constraints, our best performing approaches utilize an ensemble of statistical machine learning approaches combined with language-specific BERT based models and sentence transformers.

2023

pdf bib
nlpBDpatriots at BLP-2023 Task 1: Two-Step Classification for Violence Inciting Text Detection in Bangla - Leveraging Back-Translation and Multilinguality
Md Nishat Raihan | Dhiman Goswami | Sadiya Sayara Chowdhury Puspo | Marcos Zampieri
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)

In this paper, we discuss the nlpBDpatriots entry to the shared task on Violence Inciting Text Detection (VITD) organized as part of the first workshop on Bangla Language Processing (BLP) co-located with EMNLP. The aim of this task is to identify and classify the violent threats, that provoke further unlawful violent acts. Our best-performing approach for the task is two-step classification using back translation and multilinguality which ranked 6th out of 27 teams with a macro F1 score of 0.74.

pdf bib
nlpBDpatriots at BLP-2023 Task 2: A Transfer Learning Approach towards Bangla Sentiment Analysis
Dhiman Goswami | Md Nishat Raihan | Sadiya Sayara Chowdhury Puspo | Marcos Zampieri
Proceedings of the First Workshop on Bangla Language Processing (BLP-2023)

In this paper, we discuss the entry of nlpBDpatriots to some sophisticated approaches for classifying Bangla Sentiment Analysis. This is a shared task of the first workshop on Bangla Language Processing (BLP) organized under EMNLP. The main objective of this task is to identify the sentiment polarity of social media content. There are 30 groups of NLP enthusiasts who participate in this shared task and our best-performing approach for the task is transfer learning with data augmentation. Our group ranked 12th position in this competition with this methodology securing a micro F1 score of 0.71.