Saja Tawalbeh
2020
KEIS@JUST at SemEval-2020 Task 12: Identifying Multilingual Offensive Tweets Using Weighted Ensemble and Fine-Tuned BERT
Saja Tawalbeh
|
Mahmoud Hammad
|
Mohammad AL-Smadi
Proceedings of the Fourteenth Workshop on Semantic Evaluation
This research presents our team KEIS@JUST participation at SemEval-2020 Task 12 which represents shared task on multilingual offensive language. We participated in all the provided languages for all subtasks except sub-task-A for the English language. Two main approaches have been developed the first is performed to tackle both languages Arabic and English, a weighted ensemble consists of Bi-GRU and CNN followed by Gaussian noise and global pooling layer multiplied by weights to improve the overall performance. The second is performed for other languages, a transfer learning from BERT beside the recurrent neural networks such as Bi-LSTM and Bi-GRU followed by a global average pooling layer. Word embedding and contextual embedding have been used as features, moreover, data augmentation has been used only for the Arabic language.
SAJA at TRAC 2020 Shared Task: Transfer Learning for Aggressive Identification with XGBoost
Saja Tawalbeh
|
Mahmoud Hammad
|
Mohammad AL-Smadi
Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying
we have developed a system based on transfer learning technique depending on universal sentence encoder (USE) embedding that will be trained in our developed model using xgboost classifier to identify the aggressive text data from English content. A reference dataset has been provided from TRAC 2020 to evaluate the developed approach. The developed approach achieved in sub-task EN-A 60.75% F1 (weighted) which ranked fourteenth out of sixteen teams and achieved 85.66% F1 (weighted) in sub-task EN-B which ranked six out of fifteen teams.