Saket Maheshwary
2024
Pretraining and Finetuning Language Models on Geospatial Networks for Accurate Address Matching
Saket Maheshwary
|
Arpan Paul
|
Saurabh Sohoney
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track
We propose a novel framework for pretraining and fine-tuning language models with the goal of determining whether two addresses represent the same physical building. Address matching and building authoritative address catalogues are important to many applications and businesses, such as delivery services, online retail, emergency services, logistics, etc. We propose to view a collection of addresses as an address graph and curate inputs for language models by placing geospatially linked addresses in the same context. Our approach jointly integrates concepts from graph theory and weak supervision with address text and geospatial semantics. This integration enables us to generate informative and diverse address pairs, facilitating pretraining and fine-tuning in a self-supervised manner. Experiments and ablation studies on manually curated datasets and comparisons with state-of-the-art techniques demonstrate the efficacy of our approach. We achieve a 24.49% improvement in recall while maintaining 95% precision on average, in comparison to the current baseline across multiple geographies. Further, we deploy our proposed approach and show the positive impact of improving address matching on geocode learning.
2021
A Strong Baseline for Query Efficient Attacks in a Black Box Setting
Rishabh Maheshwary
|
Saket Maheshwary
|
Vikram Pudi
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Existing black box search methods have achieved high success rate in generating adversarial attacks against NLP models. However, such search methods are inefficient as they do not consider the amount of queries required to generate adversarial attacks. Also, prior attacks do not maintain a consistent search space while comparing different search methods. In this paper, we propose a query efficient attack strategy to generate plausible adversarial examples on text classification and entailment tasks. Our attack jointly leverages attention mechanism and locality sensitive hashing (LSH) to reduce the query count. We demonstrate the efficacy of our approach by comparing our attack with four baselines across three different search spaces. Further, we benchmark our results across the same search space used in prior attacks. In comparison to attacks proposed, on an average, we are able to reduce the query count by 75% across all datasets and target models. We also demonstrate that our attack achieves a higher success rate when compared to prior attacks in a limited query setting.