Sanghyuk Choi


2024

pdf bib
OffsetBias: Leveraging Debiased Data for Tuning Evaluators
Junsoo Park | Seungyeon Jwa | Ren Meiying | Daeyoung Kim | Sanghyuk Choi
Findings of the Association for Computational Linguistics: EMNLP 2024

Employing Large Language Models (LLMs) to assess the quality of generated responses has become a widely adopted evaluation method. Specifically, instruct-tuned models and fine-tuned judge models based on open-source LLMs have been reported. While it is known that judge models are vulnerable to certain biases, such as favoring longer answers regardless of content, the specifics of these biases remain under-explored. In this work, we qualitatively identify six types of biases inherent in various judge models. We propose EvalBiasBench as a meta-evaluation collection of hand-crafted test cases for each bias type. Additionally, we present de-biasing dataset construction methods and the associated preference dataset OffsetBias. Experimental results demonstrate that fine-tuning on our dataset significantly enhances the robustness of judge models against biases and improves performance across most evaluation scenarios. We release our datasets and the fine-tuned judge model to public.

2017

pdf bib
A Syllable-based Technique for Word Embeddings of Korean Words
Sanghyuk Choi | Taeuk Kim | Jinseok Seol | Sang-goo Lee
Proceedings of the First Workshop on Subword and Character Level Models in NLP

Word embedding has become a fundamental component to many NLP tasks such as named entity recognition and machine translation. However, popular models that learn such embeddings are unaware of the morphology of words, so it is not directly applicable to highly agglutinative languages such as Korean. We propose a syllable-based learning model for Korean using a convolutional neural network, in which word representation is composed of trained syllable vectors. Our model successfully produces morphologically meaningful representation of Korean words compared to the original Skip-gram embeddings. The results also show that it is quite robust to the Out-of-Vocabulary problem.