Sangkyu Rhim
2022
EPT-X: An Expression-Pointer Transformer model that generates eXplanations for numbers
Bugeun Kim
|
Kyung Seo Ki
|
Sangkyu Rhim
|
Gahgene Gweon
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this paper, we propose a neural model EPT-X (Expression-Pointer Transformer with Explanations), which utilizes natural language explanations to solve an algebraic word problem. To enhance the explainability of the encoding process of a neural model, EPT-X adopts the concepts of plausibility and faithfulness which are drawn from math word problem solving strategies by humans. A plausible explanation is one that includes contextual information for the numbers and variables that appear in a given math word problem. A faithful explanation is one that accurately represents the reasoning process behind the model’s solution equation. The EPT-X model yields an average baseline performance of 69.59% on our PEN dataset and produces explanations with quality that is comparable to human output. The contribution of this work is two-fold. (1) EPT-X model: An explainable neural model that sets a baseline for algebraic word problem solving task, in terms of model’s correctness, plausibility, and faithfulness. (2) New dataset: We release a novel dataset PEN (Problems with Explanations for Numbers), which expands the existing datasets by attaching explanations to each number/variable.