Santosh Borse


2023

pdf bib
Muted: Multilingual Targeted Offensive Speech Identification and Visualization
Christoph Tillmann | Aashka Trivedi | Sara Rosenthal | Santosh Borse | Rong Zhang | Avirup Sil | Bishwaranjan Bhattacharjee
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Offensive language such as hate, abuse, and profanity (HAP) occurs in various content on the web. While previous work has mostly dealt with sentence level annotations, there have been a few recent attempts to identify offensive spans as well. We build upon this work and introduce MUTED, a system to identify multilingual HAP content by displaying offensive arguments and their targets using heat maps to indicate their intensity. MUTED can leverage any transformer-based HAP-classification model and its attention mechanism out-of-the-box to identify toxic spans, without further fine-tuning. In addition, we use the spaCy library to identify the specific targets and arguments for the words predicted by the attention heatmaps. We present the model’s performance on identifying offensive spans and their targets in existing datasets and present new annotations on German text. Finally, we demonstrate our proposed visualization tool on multilingual inputs.