Sarthak Gupta


2020

pdf bib
FiNLP at FinCausal 2020 Task 1: Mixture of BERTs for Causal Sentence Identification in Financial Texts
Sarthak Gupta
Proceedings of the 1st Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation

This paper describes our system developed for the sub-task 1 of the FinCausal shared task in the FNP-FNS workshop held in conjunction with COLING-2020. The system classifies whether a financial news text segment contains causality or not. To address this task, we fine-tune and ensemble the generic and domain-specific BERT language models pre-trained on financial text corpora. The task data is highly imbalanced with the majority non-causal class; therefore, we train the models using strategies such as under-sampling, cost-sensitive learning, and data augmentation. Our best system achieves a weighted F1-score of 96.98 securing 4th position on the evaluation leaderboard. The code is available at https://github.com/sarthakTUM/fincausal

pdf bib
An Evaluation of Progressive Neural Networksfor Transfer Learning in Natural Language Processing
Abdul Moeed | Gerhard Hagerer | Sumit Dugar | Sarthak Gupta | Mainak Ghosh | Hannah Danner | Oliver Mitevski | Andreas Nawroth | Georg Groh
Proceedings of the Twelfth Language Resources and Evaluation Conference

A major challenge in modern neural networks is the utilization of previous knowledge for new tasks in an effective manner, otherwise known as transfer learning. Fine-tuning, the most widely used method for achieving this, suffers from catastrophic forgetting. The problem is often exacerbated in natural language processing (NLP). In this work, we assess progressive neural networks (PNNs) as an alternative to fine-tuning. The evaluation is based on common NLP tasks such as sequence labeling and text classification. By gauging PNNs across a range of architectures, datasets, and tasks, we observe improvements over the baselines throughout all experiments.