Seongsik Park
2023
A Framework for Vision-Language Warm-up Tasks in Multimodal Dialogue Models
Jaewook Lee
|
Seongsik Park
|
Seong-Heum Park
|
Hongjin Kim
|
Harksoo Kim
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Most research on multimodal open-domain dialogue agents has focused on pretraining and multi-task learning using additional rich datasets beyond a given target dataset. However, methods for exploiting these additional datasets can be quite limited in real-world settings, creating a need for more efficient methods for constructing agents based solely on the target dataset. To address these issues, we present a new learning strategy called vision-language warm-up tasks for multimodal dialogue models (VLAW-MDM). This strategy does not require the use of large pretraining or multi-task datasets but rather relies solely on learning from target data. Moreover, our proposed approach automatically generate captions for images and incorporate them into the model’s input to improve the contextualization of visual information. Using this novel approach, we empirically demonstrate that our learning strategy is effective for limited data and relatively small models. The result show that our method achieved comparable and in some cases superior performance compared to existing state-of-the-art models on various evaluation metrics.
2022
Pipeline Coreference Resolution Model for Anaphoric Identity in Dialogues
Damrin Kim
|
Seongsik Park
|
Mirae Han
|
Harksoo Kim
Proceedings of the CODI-CRAC 2022 Shared Task on Anaphora, Bridging, and Discourse Deixis in Dialogue
CODI-CRAC 2022 Shared Task in Dialogues consists of three sub-tasks: Sub-task 1 is the resolution of anaphoric identity, sub-task 2 is the resolution of bridging references, and sub-task 3 is the resolution of discourse deixis/abstract anaphora. Anaphora resolution is the task of detecting mentions from input documents and clustering the mentions of the same entity. The end-to-end model proceeds with the pruning of the candidate mention, and the pruning has the possibility of removing the correct mention. Also, the end-to-end anaphora resolution model has high model complexity, which takes a long time to train. Therefore, we proceed with the anaphora resolution as a two-stage pipeline model. In the first mention detection step, the score of the candidate word span is calculated, and the mention is predicted without pruning. In the second anaphora resolution step, the pair of mentions of the anaphora resolution relationship is predicted using the mentions predicted in the mention detection step. We propose a two-stage anaphora resolution pipeline model that reduces model complexity and training time, and maintains similar performance to end-to-end models. As a result of the experiment, the anaphora resolution showed a performance of 68.27% in Light, 48.87% in AMI, 69.06% in Persuasion, and 60.99% on Switchboard. Our final system ranked 3rd on the leaderboard of sub-task 1.