Setu Sinha
2024
From Sights to Insights: Towards Summarization of Multimodal Clinical Documents
Akash Ghosh
|
Mohit Tomar
|
Abhisek Tiwari
|
Sriparna Saha
|
Jatin Salve
|
Setu Sinha
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The advancement of Artificial Intelligence is pivotal in reshaping healthcare, enhancing diagnostic precision, and facilitating personalized treatment strategies. One major challenge for healthcare professionals is quickly navigating through long clinical documents to provide timely and effective solutions. Doctors often struggle to draw quick conclusions from these extensive documents. To address this issue and save time for healthcare professionals, an effective summarization model is essential. Most current models assume the data is only text-based. However, patients often include images of their medical conditions in clinical documents. To effectively summarize these multimodal documents, we introduce EDI-Summ, an innovative Image-Guided Encoder-Decoder Model. This model uses modality-aware contextual attention on the encoder and an image cross-attention mechanism on the decoder, enhancing the BART base model to create detailed visual-guided summaries. We have tested our model extensively on three multimodal clinical benchmarks involving multimodal question and dialogue summarization tasks. Our analysis demonstrates that EDI-Summ outperforms state-of-the-art large language and vision-aware models in these summarization tasks. Disclaimer: The work includes vivid medical illustrations, depicting the essential aspects of the subject matter.
HealthAlignSumm : Utilizing Alignment for Multimodal Summarization of Code-Mixed Healthcare Dialogues
Akash Ghosh
|
Arkadeep Acharya
|
Sriparna Saha
|
Gaurav Pandey
|
Dinesh Raghu
|
Setu Sinha
Findings of the Association for Computational Linguistics: EMNLP 2024
As generative AI progresses, collaboration be-tween doctors and AI scientists is leading to thedevelopment of personalized models to stream-line healthcare tasks and improve productivity.Summarizing doctor-patient dialogues has be-come important, helping doctors understandconversations faster and improving patient care.While previous research has mostly focused ontext data, incorporating visual cues from pa-tient interactions allows doctors to gain deeperinsights into medical conditions. Most of thisresearch has centered on English datasets, butreal-world conversations often mix languagesfor better communication. To address the lackof resources for multimodal summarization ofcode-mixed dialogues in healthcare, we devel-oped the MCDH dataset. Additionally, we cre-ated HealthAlignSumm, a new model that in-tegrates visual components with the BART ar-chitecture. This represents a key advancementin multimodal fusion, applied within both theencoder and decoder of the BART model. Ourwork is the first to use alignment techniques,including state-of-the-art algorithms like DirectPreference Optimization, on encoder-decodermodels with synthetic datasets for multimodalsummarization. Through extensive experi-ments, we demonstrated the superior perfor-mance of HealthAlignSumm across severalmetrics validated by both automated assess-ments and human evaluations. The datasetMCDH and our proposed model HealthAlign-Summ will be available in this GitHub accounthttps://github.com/AkashGhosh/HealthAlignSumm-Utilizing-Alignment-for-Multimodal-Summarization-of-Code-Mixed-Healthcare-DialoguesDisclaimer: This work involves medical im-agery based on the subject matter of the topic.
Search
Fix data
Co-authors
- Akash Ghosh 2
- Sriparna Saha 2
- Arkadeep Acharya 1
- Gaurav Pandey 1
- Dinesh Raghu 1
- show all...