Seungjun Moon
2024
Can Large Language Models be Good Emotional Supporter? Mitigating Preference Bias on Emotional Support Conversation
Dongjin Kang
|
Sunghwan Kim
|
Taeyoon Kwon
|
Seungjun Moon
|
Hyunsouk Cho
|
Youngjae Yu
|
Dongha Lee
|
Jinyoung Yeo
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Emotional Support Conversation (ESC) is a task aimed at alleviating individuals’ emotional distress through daily conversation. Given its inherent complexity and non-intuitive nature, ESConv dataset incorporates support strategies to facilitate the generation of appropriate responses. Recently, despite the remarkable conversational ability of large language models (LLMs), previous studies have suggested that they often struggle with providing useful emotional support. Hence, this work initially analyzes the results of LLMs on ESConv, revealing challenges in selecting the correct strategy and a notable preference for a specific strategy. Motivated by these, we explore the impact of the inherent preference in LLMs on providing emotional support, and consequently, we observe that exhibiting high preference for specific strategies hinders effective emotional support, aggravating its robustness in predicting the appropriate strategy. Moreover, we conduct a methodological study to offer insights into the necessary approaches for LLMs to serve as proficient emotional supporters. Our findings emphasize that (1) low preference for specific strategies hinders the progress of emotional support, (2) external assistance helps reduce preference bias, and (3) existing LLMs alone cannot become good emotional supporters. These insights suggest promising avenues for future research to enhance the emotional intelligence of LLMs.
Coffee-Gym: An Environment for Evaluating and Improving Natural Language Feedback on Erroneous Code
Hyungjoo Chae
|
Taeyoon Kwon
|
Seungjun Moon
|
Yongho Song
|
Dongjin Kang
|
Kai Tzu-iunn Ong
|
Beong-woo Kwak
|
Seonghyeon Bae
|
Seung-won Hwang
|
Jinyoung Yeo
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
This paper presents Coffee-Gym, a comprehensive RL environment for training models that provide feedback on code editing. Coffee-Gym includes two major components: (1) Coffee, a dataset containing humans’ code edit traces for coding questions and human-written feedback for editing erroneous code; (2) CoffeeEval, a reward function that faithfully reflects the helpfulness of feedback by assessing the performance of the revised code in unit tests. With them, Coffee-Gym addresses the unavailability of high-quality datasets for training feedback models with RL, and provides more accurate rewards than the SOTA reward model (i.e., GPT-4). By applying Coffee-Gym, we elicit feedback models that outperform baselines in enhancing open-source code LLMs’ code editing, making them comparable with closed-source LLMs. We make the dataset and the model checkpoint publicly available in https://huggingface.co/spaces/Coffee-Gym/Project-Coffee-Gym.
Search
Fix data
Co-authors
- Dongjin Kang 2
- Taeyoon Kwon 2
- Jinyoung Yeo 2
- Seonghyeon Bae 1
- Hyungjoo Chae 1
- show all...