Shao Yanqiu
2023
CHED: A Cross-Historical Dataset with a Logical Event Schema for Classical Chinese Event Detection
Wei Congcong
|
Feng Zhenbing
|
Huang Shutan
|
Li Wei
|
Shao Yanqiu
Proceedings of the 22nd Chinese National Conference on Computational Linguistics
“Event detection (ED) is a crucial area of natural language processing that automates the extrac-tion of specific event types from large-scale text, and studying historical ED in classical Chinesetexts helps preserve and inherit historical and cultural heritage by extracting valuable informa-tion. However, classical Chinese language characteristics, such as ambiguous word classes andcomplex semantics, have posed challenges and led to a lack of datasets and limited research onevent schema construction. In addition, large-scale datasets in English and modern Chinese arenot directly applicable to historical ED in classical Chinese. To address these issues, we con-structed a logical event schema for classical Chinese historical texts and annotated the resultingdataset, which is called classical Chinese Historical Event Dataset (CHED). The main challengesin our work on classical Chinese historical ED are accurately identifying and classifying eventswithin cultural and linguistic contexts and addressing ambiguity resulting from multiple mean-ings of words in historical texts. Therefore, we have developed a set of annotation guidelinesand provided annotators with an objective reference translation. The average Kappa coefficientafter multiple cross-validation is 68.49%, indicating high quality and consistency. We conductedvarious tasks and comparative experiments on established baseline models for historical ED inclassical Chinese. The results showed that BERT+CRF had the best performance on sequencelabeling task, with an f1-score of 76.10%, indicating potential for further improvement. 1Introduction”
Exploring Accurate and Generic Simile Knowledge from Pre-trained Language Models
Zhou Shuhan
|
Ma Longxuan
|
Shao Yanqiu
Proceedings of the 22nd Chinese National Conference on Computational Linguistics
“A simile is an important linguistic phenomenon in daily communication and an important taskin natural language processing (NLP). In recent years, pre-trained language models (PLMs) haveachieved great success in NLP since they learn generic knowledge from a large corpus. However,PLMs still have hallucination problems that they could generate unrealistic or context-unrelatedinformation.In this paper, we aim to explore more accurate simile knowledge from PLMs.To this end, we first fine-tune a single model to perform three main simile tasks (recognition,interpretation, and generation). In this way, the model gains a better understanding of the simileknowledge. However, this understanding may be limited by the distribution of the training data. To explore more generic simile knowledge from PLMs, we further add semantic dependencyfeatures in three tasks. The semantic dependency feature serves as a global signal and helpsthe model learn simile knowledge that can be applied to unseen domains. We test with seenand unseen domains after training. Automatic evaluations demonstrate that our method helps thePLMs to explore more accurate and generic simile knowledge for downstream tasks. Our methodof exploring more accurate knowledge is not only useful for simile study but also useful for otherNLP tasks leveraging knowledge from PLMs. Our code and data will be released on GitHub.”
Search
Fix data
Co-authors
- Wei Congcong 1
- Ma Longxuan 1
- Zhou Shuhan 1
- Huang Shutan 1
- Li Wei 1
- show all...
Venues
- ccl2