Shaojie Tang
2024
BiKT: Enabling Bidirectional Knowledge Transfer Between Pretrained Models and Sequential Downstream Tasks
Hang Zeng
|
Chaoyue Niu
|
Fan Wu
|
Shaojie Tang
|
Leihao Pei
|
Chengfei Lv
|
Guihai Chen
Findings of the Association for Computational Linguistics: EMNLP 2024
Adapting pretrained models to downstream tasks is important in practical applications. Existing frameworks adapt from an initial pretrained model to each downstream task directly, but ignore the sequential nature of the downstream tasks and their feedback effect on the pretrained model. In this work, we propose a new framework, called BiKT, to enable bidirectional knowledge transfer between pretrained models and downstream tasks in rounds. We model each downstream task in the current round as a target task for adaptation and treat all the tasks in the previous rounds as source tasks for feedback. We design a feedback algorithm by multi-task learning over the labeled data of the source tasks, where task-specific prompts are plugged into the backbone network for decoupling task-exclusive knowledge from task-shared knowledge. We further utilize the good initiation of the new backbone network updated in the feedback phase and the trained prompts of the source tasks for adaptation. Evaluation over 9 GLUE datasets, 6 SuperGLUE datasets, and 8 other datasets using models with different pretraining levels and different parameter scales shows remarkable improvement in full-shot and few-shot adaptation settings.
Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents
Zengqing Wu
|
Run Peng
|
Shuyuan Zheng
|
Qianying Liu
|
Xu Han
|
Brian I. Kwon
|
Makoto Onizuka
|
Shaojie Tang
|
Chuan Xiao
Findings of the Association for Computational Linguistics: EMNLP 2024
Large Language Models (LLMs) have increasingly been utilized in social simulations, where they are often guided by carefully crafted instructions to stably exhibit human-like behaviors during simulations. Nevertheless, we doubt the necessity of shaping agents’ behaviors for accurate social simulations. Instead, this paper emphasizes the importance of spontaneous phenomena, wherein agents deeply engage in contexts and make adaptive decisions without explicit directions. We explored spontaneous cooperation across three competitive scenarios and successfully simulated the gradual emergence of cooperation, findings that align closely with human behavioral data. This approach not only aids the computational social science community in bridging the gap between simulations and real-world dynamics but also offers the AI community a novel method to assess LLMs’ capability of deliberate reasoning.Our source code is available at https://github.com/wuzengqing001225/SABM_ShallWeTeamUp
Search
Co-authors
- Hang Zeng 1
- Chaoyue Niu 1
- Fan Wu (吴钒) 1
- Leihao Pei 1
- Chengfei Lv 1
- show all...