Sherif Saad
2024
Finding a Needle in the Adversarial Haystack: A Targeted Paraphrasing Approach For Uncovering Edge Cases with Minimal Distribution Distortion
Aly Kassem
|
Sherif Saad
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Adversarial attacks against Language models (LMs) are a significant concern. In particular, adversarial samples exploit the model’s sensitivity to small input changes. While these changes appear insignificant on the semantics of the input sample, they result in significant decay in model performance. In this paper, we propose Targeted Paraphrasing via RL (TPRL), an approach to automatically learn a policy to generate challenging samples that improve the model’s performance. TPRL leverages FLAN-T5, a language model, as a generator and employs a self-learned policy using a proximal policy optimization to generate the adversarial examples automatically. TPRL’s reward is based on the confusion induced in the classifier, preserving the original text meaning through a Mutual Implication score. We demonstrate & evaluate TPRL’s effectiveness in discovering natural adversarial attacks and improving model performance through extensive experiments on four diverse NLP classification tasks via Automatic & Human evaluation. TPRL outperforms strong baselines, exhibits generalizability across classifiers and datasets, and combines the strengths of language modeling and reinforcement learning to generate diverse and influential adversarial examples.
2023
Preserving Privacy Through Dememorization: An Unlearning Technique For Mitigating Memorization Risks In Language Models
Aly Kassem
|
Omar Mahmoud
|
Sherif Saad
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Large Language models (LLMs) are trained on vast amounts of data, including sensitive information that poses a risk to personal privacy if exposed. LLMs have shown the ability to memorize and reproduce portions of their training data when prompted by adversaries. Prior research has focused on addressing this memorization issue and preventing verbatim replication through techniques like knowledge unlearning and data pre-processing. However, these methods have limitations regarding the number of protected samples, limited privacy types, and potentially lower-quality generative models. To tackle this challenge more effectively, we propose “DeMem,” a novel unlearning approach that utilizes an efficient reinforcement learning feedback loop via proximal policy optimization. By fine-tuning the language model with a negative similarity score as a reward signal, we incentivize the LLMs to learn a paraphrasing policy to unlearn the pre-training data. Our experiments demonstrate that DeMem surpasses strong baselines and state-of-the-art methods in terms of its ability to generalize and strike a balance between maintaining privacy and LLM performance.