Shintaro Ozaki


2024

pdf bib
An Implementation of Werewolf Agent That does not Truly Trust LLMs
Takehiro Sato | Shintaro Ozaki | Daisaku Yokoyama
Proceedings of the 2nd International AIWolfDial Workshop

Werewolf is an incomplete information game, which has several challenges when creating a computer agent as a player given the lack of understanding of the situation and individuality of utterance (e.g., computer agents are not capable of characterful utterance or situational lying). We propose a werewolf agent that solves some of those difficulties by combining a Large Language Model (LLM) and a rule-based algorithm. In particular, our agent uses a rule-based algorithm to select an output either from an LLM or a template prepared beforehand based on the results of analyzing conversation history using an LLM. It allows the agent to refute in specific situations, identify when to end the conversation, and behave with persona. This approach mitigated conversational inconsistencies and facilitated logical utterance as a result. We also conducted a qualitative evaluation, which resulted in our agent being perceived as more human-like compared to an unmodified LLM. The agent is freely available for contributing to advance the research in the field of Werewolf game.

pdf bib
Document-level Translation with LLM Reranking: Team-J at WMT 2024 General Translation Task
Keito Kudo | Hiroyuki Deguchi | Makoto Morishita | Ryo Fujii | Takumi Ito | Shintaro Ozaki | Koki Natsumi | Kai Sato | Kazuki Yano | Ryosuke Takahashi | Subaru Kimura | Tomomasa Hara | Yusuke Sakai | Jun Suzuki
Proceedings of the Ninth Conference on Machine Translation

We participated in the constrained track for English-Japanese and Japanese-Chinese translations at the WMT 2024 General Machine Translation Task. Our approach was to generate a large number of sentence-level translation candidates and select the most probable translation using minimum Bayes risk (MBR) decoding and document-level large language model (LLM) re-ranking. We first generated hundreds of translation candidates from multiple translation models and retained the top 30 candidates using MBR decoding. In addition, we continually pre-trained LLMs on the target language corpora to leverage document-level information. We utilized LLMs to select the most probable sentence sequentially in context from the beginning of the document.