Shohreh Shaghaghian
2021
Predicting the Success of Domain Adaptation in Text Similarity
Nick Pogrebnyakov
|
Shohreh Shaghaghian
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)
Transfer learning methods, and in particular domain adaptation, help exploit labeled data in one domain to improve the performance of a certain task in another domain. However, it is still not clear what factors affect the success of domain adaptation. This paper models adaptation success and selection of the most suitable source domains among several candidates in text similarity. We use descriptive domain information and cross-domain similarity metrics as predictive features. While mostly positive, the results also point to some domains where adaptation success was difficult to predict.