Dominant pre-trained language models (PLMs) have demonstrated the potential risk of memorizing and outputting the training data. While this concern has been discussed mainly in English, it is also practically important to focus on domain-specific PLMs. In this study, we pre-trained domain-specific GPT-2 models using a limited corpus of Japanese newspaper articles and evaluated their behavior. Experiments replicated the empirical finding that memorization of PLMs is related to the duplication in the training data, model size, and prompt length, in Japanese the same as in previous English studies. Furthermore, we attempted membership inference attacks, demonstrating that the training data can be detected even in Japanese, which is the same trend as in English. The study warns that domain-specific PLMs, sometimes trained with valuable private data, can ”copy and paste” on a large scale.
As the deployment of pre-trained language models (PLMs) expands, pressing security concerns have arisen regarding the potential for malicious extraction of training data, posing a threat to data privacy. This study is the first to provide a comprehensive survey of training data extraction from PLMs.Our review covers more than 100 key papers in fields such as natural language processing and security. First, preliminary knowledge is recapped and a taxonomy of various definitions of memorization is presented. The approaches for attack and defense are then systemized. Furthermore, the empirical findings of several quantitative studies are highlighted. Finally, future research directions based on this review are suggested.
Word embeddings and pre-trained language models have become essential technical elements in natural language processing. While the general practice is to use or fine-tune publicly available models, there are significant advantages in creating or pre-training unique models that match the domain. The performance of the models degrades as language changes or evolves continuously, but the high cost of model building inhibits regular re-training, especially for the language models. This study proposes an efficient way to detect time-series performance degradation of word embeddings and pre-trained language models by calculating the degree of semantic shift. Monitoring performance through the proposed method supports decision-making as to whether a model should be re-trained. The experiments demonstrated that the proposed method can identify time-series performance degradation in two datasets, Japanese and English. The source code is available at
https://github.com/Nikkei/semantic-shift-stability.
This paper describes our system in SemEval-2022 Task 8, where participants were required to predict the similarity of two multilingual news articles. In the task of pairwise sentence and document scoring, there are two main approaches: Cross-Encoder, which inputs pairs of texts into a single encoder, and Bi-Encoder, which encodes each input independently. The former method often achieves higher performance, but the latter gave us a better result in SemEval-2022 Task 8. This paper presents our exploration of BERT-based Bi-Encoder approach for this task, and there are several findings such as pretrained models, pooling methods, translation, data separation, and the number of tokens. The weighted average ensemble of the four models achieved the competitive result and ranked in the top 12.